Which kinetic model best fits the methane production on pig farms with covered lagoon digesters?

The volumetric production of biogas can be estimated through kinetic models, although many of them have not been validated adequately in full-scale systems with specific operational conditions in tropical countries. This study aimed to evaluate the applicability of these kinetic models to estimate methane production in pig farming operated with covered lagoon digesters (CLD, to inform: Chen-Hashimoto, First-order, Cone, Modified Gompertz, Modified Stover-Kincannon and Deng. The input data were obtained through the monitoring of two CLD in pig farming located in Minas Gerais-Brazil. The analyzed parameters were methane composition, the temperature of the substrate, chemical oxygen demand (COD), and volatile solids. The real production of methane (Pactual) was determined in relation to the electric power production at the internal combustion engine. The results obtained for Pactual and the models were compared through regression analysis (t-test, α=1%). All of the evaluated models overestimate the methane production in comparison with Pactual (405.0 m3 CH4 d-1). The smallest difference between the CH4 production and the measurement on the pig farm was obtained with Chen model, overestimating approximately 16.3%, while the highest estimate was 38.5% obtained with the Modified Stover-Kincannon model. The results showed the absence of statistical differences among the real data (monitored system) and the simulated data (p-value>0.01). The mathematical kinetic models are considered a reliable tool to evaluate the energetic potential of biogas in pig farming with CLD from operational simplicity and low cost.

___

  • [1]. USDA. (2020) Market and Trade Data: Meat Swine. United Sttates Department of Agricultural Service. [Online]. Available: https://apps.fas.usda.gov/psdonline/app/index.html#/app/topCountriesByCommodity.
  • [2]. A. Kunz, M. M. Higarashi, and P. A. de Oliveira, “Tecnologias de manejo e tratamento de dejetos de suínos estudadas no Brasil,” Cad. Ciência Tecnol., vol. 22, pp. 651–665, 2005.
  • [3]. M. L. Veroneze et al., M. L. Veroneze, D.Schwantes, A. C.Gonçalves, Al.Richart, J. Manfrin, A. da P. Schiller and T. B. Schuba. “Production of biogas and biofertilizer using anaerobic reactors with swine manure and glycerin doses,” J. Clean. Prod., vol. 213, pp. 176–184, 2019.
  • [4]. J. Á. Fernandes, “Variáveis microbiológicas e físico-químicas em biodigestores anaeróbios escala piloto alimentados com dejetos de bovinos leiteiros e suínos,” M. thesis, Federal University the Juiz de Fora, Juiz de Fora, 2016.
  • [5]. F. J. Andriamanohiarisoamanana, I. Ihara, G. Yoshida and K. Umetsu, “Kinetic study of oxytetracycline and chlortetracycline inhibition in the anaerobic digestion of dairy manure”, Bioresource Technology, 315, 123810, 2020.
  • [6]. W. S. Neto, Cinética de processos fermentativos. In: Curso fermentation technology. Florianópolis, 1999.
  • [7]. W. Zhang, Q. Wei, S. Wu, D. Qi, W. Li, Z. Zuo, R. and Dong, “Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions”, Applied energy, 128, 175-183, 2014.
  • [8]. D. D. Nguyen, B. H. Jeon, J. H. Jeung, E. R. Rene, J. R. Banu, B. Ravindran, and S. W. Chang, “Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis”, Bioresource technology, 280, 269-276, 2019.
  • [9]. H. Yang, L. Deng, G. Liu, D. Yang, Y. Liu and Z. Chen, “A model for methane production in anaerobic digestion of swine wastewater”, Water research, 102, 464-474, 2016.
  • [10]. Y. R. CHEN, “Kinetic analysis of anaerobic digestion of pig manure and its design implications,” Agric. Wastes, vol. 8, no. 2, pp. 65–81, 1983.
  • [11]. A. Veeken and B. Hamelers, “Effect of temperature on hydrolysis rates of selected biowaste components”, Bioresource technology, 69(3), 249-254, 1999.
  • [12]. J. W. Cone, A. H. van Gelder, G. J. Visscher and L. Oudshoorn, “Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus”, Animal Feed Science and Technology, 61(1-4), 113-128, 1996.
  • [13]. M. H. Zwietering, I. Jongenburger, F. M. Rombouts and K. J. A. E. M. Van't Riet, “Modeling of the bacterial growth curve”, Applied and environmental microbiology, 56(6), 1875-1881, 1990.
  • [14]. S. Kerkhoff, J. M. de L. Yuki, K. Rodrigo, N. C. Camilo, L. Mariani, and J. L. G. Silva, “Potencial teórico de produção de biogás e energia elétrica a partir da biomassa residual da suinocultura da Região Oeste do Paraná,” in 10º Congresso sobre Geração Distribuída e Energia no Meio Rural, 2015.
  • [15]. L. Deng, H. Yang, G. Liu, D. Zheng, Z. Chen, Y. Liu, X. Pu, L. Song, Z. Wang and Y. Lei, “Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater”, Appl. Energ, 134, 349-355, 2014.
  • [16]. H. Yu, F. Wilson and J. H. Tay, “Kinetic analysis of an anaerobic filter treating soybean wastewater”, Water Research, 32(11), 3341-3352, 1998.
  • [17]. APHA - American Public Health Association & American Water Works Association., Standard methods for the examination of water and wastewater, Am. public Heal. Assoc., 2017.
  • [18]. L. H. N. Avellar, “A valorização dos subprodutos agroindustriais visando a cogeração e a redução da poluição ambiental,” D. thesis, State University the Paulista Júlio de Mesquita Filho, 2001.
  • [19]. H. A. R. Zilotti, “Potencial de produção de biogás em uma estação de tratamento de esgoto de Cascavel para a geração de energia elétrica,” M. thesis, State University the Oeste do Paraná, Cáscavel, Feb. 2012.
  • [20]. M. Guimarães, and G. Amaral, “Impactos ambientais da suinocultura: desafios e oportunidades,” BNDES Setorial, no. 44, pp. 125–156, 2016.
  • [21]. D. M. Fernandes, R. N. Costanzi, A. Feiden, S. Nelson, and M. De Souza, “Processo de biodigestão anaeróbia em uma granja de suínos,” Ambiência, vol. 10, no. 3, pp. 741–754, 2014.
  • [22]. V. Veloso, A. T. Campos, D. B. Marin, M. C. Mattioli, and A. C. Néri, “Sustentabilidade ambiental da suinocultura com manejo de dejetos em biodigestor – avaliação de parâmetros físico-químicos” Rev. Energ. na Agric., vol. 26, no. 4, pp. 322–333, 2018.
  • [23]. F. P. Silva, J. P. Botton, S. N. M. de Souza, and A. M. M. Hachisuca, “Parâmetros físico-químico na operação de biodigestores para suinocultura,” Rev. Tecnológica, vol. Edição Esp, pp. 33–41, 2015.
  • [24]. N. A. de L. Ferreira, K. O. Aires, M. V. de A. Almeida, M. C. de Melo, and V. E. D. Monteiro, “Avaliação das concentrações de metano gerado em um biorreator de bancada com base em parâmetros físico-químicos,” Eng. Sanitária Ambient., vol. 22, no. 3, pp. 473–479, 2017.
  • [25]. C. Zhao, H. Yan, Y. Liu, Y. Huang, R. Zhang, C. Chen and G. Liu, “Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion” Waste management, 52, 295-301, 2016.
  • [26]. J. Shen, C. Zhao, Y. Liu, R. Zhang, G. Liu and C. Chen, “Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures”, Energy Conversion and Management, 198, 110535, 2019.
  • [27]. C. Hasan, A. K. Feitosa, M. C. de A. Silva, M. Marder, and O. Konrad, “Produção de biogás a partir deresíduos agroindustriais: análise dos teores de sólidos totais, voláteis e fixos em amostras pré digestão anaeróbia,” Rev. Bras. Energias Renov., vol. 8, no. 1, pp. 257–273, 2019.
  • [28]. Y. de L. Mito, S. Kerkhoff, J. L. G. Silva, M. G. Vendrame, R. L. R. Steinmetz, and A. Kunz, Metodologia para estimar o potencial de biogás e biometano a partir de plantéis suínos e bovinos no Brasil, Documentos. Concórdia : Embrapa Suínos e Aves: Concórdia: Embrapa Suínos e Aves, 2018.