Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ

MAX seramik ailesinde en dikkat çeken ve üzerinde en fazla araştırma yapılan sistem Ti-Si-C sistemi ve 312 yapısıdır. Ti3SiC2 fazı farklı başlangıç malzemeleri kullanılarak üretilmektedir. Kullanılan malzemelere bağlı olarak, üretim parametreleri ve yöntemleri farklılık göstermektedir. Bu çalışmada, titanyum, silisyum ve karbon kullanılarak, hazırlanan stiokiometrik karışımdan yüksek safiyette Ti3SiC2 fazının sentezi çalışılmıştır. Kullanılan başlangıç karışımları ve elde edilen reaksiyon ürünleri SEM, XRD, XRF, TG/DTA gibi analiz yöntemleriyle analiz edilmiştir. Deneysel sonuçlara göre, başlangıç karışımında bulunan silisyum miktarı önemlidir. X-ışınları analizi göstermiştir ki; 1350˚C'de ve iki saat sinterleme süresinden sonra yapıda 312 MAX fazı oluşmaktadır. Ortamda bulunan karbon kilit role sahiptir ve fazla karbonun bulunması halinde oluşan MAX fazı, yüksek sıcaklılarda ikili karbür yapısına dönüşmektedir. 

SYNTHESIS OF Ti3SiC2 MAX PHASE FROM ELEMENTAL POWDERS

In MAX phase material family, Ti-Si-C system and especially 312 Ti3SiC2 phase is the most attracted and investigated structure. It can be produced from different methods. As expected, each method differs processing methods, experimental conditions and parameters depending on the starting composition. In this article, the processing of high purity Ti3SiC2 phase was studied using Ti, Si and C powders. The powders were mixed in stoichiometric ratio to obtain pure Ti3SiC2 phase. Both of the initial and the obtained product samples were characterised using SEM, XRD, XRF, TG/DTA methods. The results showed that, the silicon content was important and carbon plays critical role. X-ray diffraction analysis showed that the 312 TiSiC phases was formed after the sintering at temperature of 1350 ˚C for 2 h. If excess carbon is present in the system, the formed MAX phase was converted into binary carbide phases. 

___

  • [1] Noontny, H., (1970). Struktu chemite einiger verbindungen der ubergangs metallemit den elementen C Si Ge Sn. Prog Solid State Chem, vol:2, pp:27-62.
  • [2] Noontny, H., Schuster, J.C., Rogl, P., (1982). Structural chemistry of complex carbides and related compounds, J Solis State Chem, vol:44, pp:126-133.
  • [3] Barsoum, M.W. and El-Raghy, T., (1996). Synthesis and characterization of a remarkable Ceramic: Ti3SiC2. J Amer Cer Soc. Vol:79, pp:1953-1956.
  • [4] Hu, C., Xhang, H., Li, F., Huang, Q., and Bao, Y., (2013). New phases discovery in MAX family. Int J Ref Metals Hard Mat, vol:36, pp:300-312.
  • [5] Rodovic, M. and Barsoum, M.W., (2013). Max phases: Bridging the gap between metals and ceramics. Amer Ceram Soc, vol:92, no:3, pp:20-27.
  • [6] Barsoum, M.W. and El-Raghy, T., (2001). The max phases: unique new carbides and nitride materials. Amer Scientific, vol:89, pp:334-343.
  • [7] Chen, D., Shirato, K., Barsoum, M.W., El-Raghy, T., and Ritchie, R.O., (2001). Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures, J Amer Ceram Soc vol:84, no:12, pp:2914-2920.
  • [8] Sunberg, M., Malamgvist, G., Magnusson, A., and El-Raghy, T., (2004). Alumina forming high temperature silicides-carbides, Ceram Inter, vol:30, pp:899-1904.
  • [9] Wang, X. and ark., (2012). Ti5Al2C3: A new ternary carbide belonging to MAX phases in the Ti–Al–C system. J Amer Cer Soc. Vol:95, pp:1508-1510.
  • [10] Lin, Z.J., and ark., (2006). Microstructure and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J Amer Cer Soc. 89:3765-376.
  • [11] Dubois, S., Cabioch, T., Chartier, P., Gauthier, V., and Jaouen, M., (2007). A new ternary nano laminate carbide: Ti3SnC2. J Amer Cer Soc. 90:2642-2644.
  • [12] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). V2AlC, V4AlC3-x (x≈0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure, Inorganic Chemistry 46:7646-7653.
  • [13] Zhou, Y.C. Meng, F.L., and Zhang, J., (2008). New MAX-phase compounds in the V-Cr-Al-C system. J Amer Cer Soc. 91:1357-1360. [14] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique'', Inorganic Chemistry 46: 1410-1418.
  • [15] Hu, C.F, Li, F.Z., Zhang, J., Wang, J.M., Wang, J.Y., and Zhou, Y.C., (2007). Nb4AlC3: A new compound belonging to the MAX phases, Scripta Materialia, 57:893-896.
  • [16] Procopio, A.T., El-Raghy, T., and Barsoum M.W., (2000). Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. Metallurgy and Material Transactions A 1:373-378.
  • [17] Raoult, C., Langlais, F., and Naslain, R., (1994). Solid state synthesis and obtain and characterization of the ternary phase Ti3SiC2. J Mat Sci. Vol:29, pp:3384-3394.
  • [18] Gulbinski, W., Gilewicz, A., Suszko, T., Warcholinski, B., and Kuklinski, Z., (2004). Ti-Si-C sputter deposited thin film coatings. Surface and Coatings Tech. Vol:180-181, pp:341-346.
  • [19] Luo, Y.M., Pan, W., Li, S.Q., and Chen, J., (2002). Synthesis and mechanical properties of in-situ hot-pressed Ti3SiC2 poly crystals. Ceram Int. Vol:28, pp:227-230.
  • [20] Atasoy, A., (2014). Effect of Al powder addition on the formation of MAX phase. 10th Inter. Conference on the Science of Hard Materials. Cancun-Mexico.
  • [21] Atasoy, A. and Saka, E., (2016). Synthesis of the MAX phase of Ti3SiC2 ceramic from oxide. 18. Int. Metallurgy and Materials Congress. Istanbul, ss:71-74.
  • [22] Atasoy, A. and Saka, E., (2017). Ti3SiC2 Max phase from TiC-Si-Ti mixture. 5th Int. Symp on Innv. Techn. in Eng. Scn. Baku University, will be presented.
  • [23] Atasoy, A., Saka, E., and Koşar, A., (2017). An investigation on processing of Ti3SiC2 Max phase materials from bottom to up under the laboratory conditions: from TiC-Si-C powders. 8. Inter. Advanced Technologies Symposium. Elazığ-Turkey.
  • [24] Atasoy, A. and Koşar, A., (2017). Ti-Si-C MAX phase system. 5th Int. Symp on Innv. Techn. In Eng. Scn. Baku University, will be presented.
  • [25] Atasoy, A., (2013). Max fazlı (katmanlı) seramikler. II. Ulusal Ege Kompozit Malzemeler Sempozyumu. Kuşadası-Muğla-Turkey.
  • [26] Altuncu, E., Vardar, S., Saka, E. ve Atasoy, A., (2015), MAX fazı alaşımları ve termo-fiziksel özellikleri. J Aeronautics and Space Tech. 8(1):75-86.