Tepe Mobilya' da hücresel üretimle teslimat sürelerinin kısaltılması

Tepe Mobilya Fabrikası'nda döşemeli ürünlerin teslimat sürelerinin azaltılması fabrika ve ürünlerin satışlarını gerçekleştiren Tepe Home için büyük önem taşımaktadır. Bu projede fabrikanın hücresel üretime geçişi için bir yöntembilim geliştirildikten sonra, hücreler arası ve hücre içi değişkenliği enazlayacak işçi atama probleminin çözümü için bir matematiksel model geliştirilmiş ve bu modelin çözümüyle en iyi hücre sayısı ve her bir hücreye atanacak makine ve işçi sayıları belirlenmiştir. Önerilen çözüm setinden alınan bir hücre ve işçi atama sonucu belirlenen bir pilot hücrede uygulanmış, olumlu sonuçlar alınmış ve bu yöntembilimi destekleyen web tabanlı olarak çalışabilen PHP programlama dili ve Oracle 9.2 veritabanının kullanıldığı "Üretim Takip ve Bilgilendirme Sistemi" programı hazırlanmıştır. Geliştirilen bu yöntembilim ile döşemeli ürünlerin teslimat sürelerinde İstanbul siparişleri için %14,5'lik, Ankara siparişleri içinse %8,29'luk bir azalma sağlanabileceği gösterilmiştir.

The main objective of this study is the implementation of a cellular manufacturing system to reduce the customer order lead times at Tepe Mobilya. We first developed a mathematical model for the worker allocation problem and used this model to find the optimum number of cells in order to reduce the variability of worker skill levels in and between the manufacturing cells. We implemented the proposed solution approach in a pilot cell and showed that the order lead times could be reduced by 14.5% or 8.29% for the customer orders from Istanbul and Ankara regions, respectively. Due to the existing management practices, customer orders from İstanbul region has a higher priority compared to the other customer orders. We also designed a web-based system to monitor the customer orders throughout the system. This web-based system could be used to schedule the customer orders at each production stage and to provide a timely information to the decision makers.

___

  • 1. Al-Loughani, L., (1997). Algorithmic Approaches for Solving the Euclidean Distance Location-allocation Problems, Ph. D. Dissertation, Industrial and System Engineering , Viginia Polytechnic Institute and State University, Blacksburgh, Virginia.
  • 2. Al-Loughani L., H. D. Sherali, Iand S. Subramanian, Global optimization Procedures for the Capacitated Euclidean and lp Distance Multifacility Location-allocation Problems, Operations Research 50 (2002), 433-448.
  • 3. Alt FB.,Golden B, Interval Estimation of a Global Optimum for large Combinatorial Problems. Naval Research Logistic Quarterly 1979;26:69-77.
  • 4. Altınel İ.K., Aras N., Oommen B. John, Fast, Efficient and Accurate Solutions to the Hamiltonian Path Problem Using Neural Approaches, Computers & Operations Research 27 (2000), 461-494.
  • 5. Aras N., Orbay M, and Altınel İ.K., (2006). “Efficient Heuristics For the Rectilinear Distance Capacitated Multi-Facility Weber Problem”, Accepted for Publication in Journal of the Operational Research Society.
  • 6. Brimberg J. and Love R.F., Global Convergence of a Generalized Iterative Procedure for the Minimum Location Problem in $I_p$ Distances, Operations Research 41 (1993),1153-1163.
  • 7. Cooper L., The transportation-location Problem, Operations Research 20 (1972), 94-108.
  • 8. Cooper L., Heuristic Methods for Location-allocation Problems., SIAM Review 6 (1964), 37-52.
  • 9 Cooper L., Solutions of Generalized Locational Equilibrium Models, Journal of Regional Science 7 (1967), 1-18.
  • 10. Derigs U. Using Confidence Limits for the Global Optimum in Combinatorial Optimization. Operations Research 1985;33:1024-49.
  • 11. Fisher R, Tippet L. Limiting Forms of the Frequency Distribution of the Largest or Smallest Number of a Sample. Proceedings of Cambridge Philosophical Society 1928; 24:180-91.
  • 12. Francis RL, McGinnis LF and White JA (1992). Facility Layout and Location: An Analytical Approach, 2nd edition. Prentice Hall, New Jersey.
  • 13. Graham R.L., An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set, Information Processing Letters 7 (1972), 175-180.
  • 14. P. Hansen, J. Perreur, and J.-F. Thisse. Location Theory, Dominance, and Convexity: Some Further Results. Operations Research, 28(5):1241–1250, 1980.
  • 15. Hurter A.P. and Wendell R.E., Location Theory, Dominance and Convexity, Operations Research 21 (1973), 314-320.
  • 16. İçöz O.C, Başer H., Bulut G. (2006) Yayınlanmamış Endüstri Mühendisliği Bitirme Pojesi Raporu, Boğaziçi Üniversitesi, İstanbul, Türkiye.
  • 17. Kim S., Sherali HD and Ramachandran S and (1994). A Localization and Reformulation Discrete Programming Approach for the rectilinear Distance Location-allocation Problem. Discrete Appl Math 49: 357-358.
  • 18. Love RF, Morris and Weselowsy G (1998). Facilities Location and Methods, Elsevier Science Publishing Co., New York.
  • 19. Selim S., Biconvex Programming and Deterministic and Stochastic Location Allocation Problems. Ph.D. Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1979.
  • 20. Sherali H.D. and Tunçbilek C.H., A Squared-Euclidean Distance Location-allocation, Naval Research Logistic 39 (1992), 447-469.
  • 21. Weiszfeld E., Sur le Point Lequal la Somme des Distances de n points Donné est Minimum, Tohoku Mathematics Journal 43 (1937), 355-386.
  • 22. Wesolowsky G., The Weber Problem: History and perspectives, Location Science 1 (1993), 5-23.
  • 23. Zanakis S. (1977). Computational Experince With Some Nonlinear Optimization Algorithms in Deriving Maximum Likelihood Estimates for the Three-parameter Weibull distribution. TIMS Studies in the Management Sci. 7, 63-77
Endüstri Mühendisliği-Cover
  • ISSN: 1300-3410
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1989
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI