SIRA BAĞIMLI TEK MAKİNELİ ÇİZELGELEME PROBLEMİNDE ERKENLİK VE GEÇLİK KATSAYILARININ BULANIK AKSİYOMATİK TASARIM YÖNTEMİ İLE BELİRLENMESİ

Bu çalışmada, tam zamanında üretim felsefesini uygulamak zorunda olan işletmelerin üretim çizelgeleme problemlerini çözerken karşılaştıkları bulanık değerlerin probleme katılarak gerçeğe en uygun çözümü elde etmeleri hedeflenmiştir. Gıda sektöründe faaliyet gösteren bir işletmenin tek bir makine üzerindeki farklı teslim tarihli ürünlerinin tam zamanında sevk edilmesi problemi ele alınmış, erken ve geç üretimler cezalandırılarak ceza maliyeti fonksiyonunu en küçükleyen çizelge oluşturulmuştur.Çalışma kapsamında, belirli kriterler altında bulanık aksiyomatik tasarım yaklaşımı ile erken ve geç üretimin ceza katsayıları hesaplanmıştır. Bu yaklaşım ile elde edilen ceza değerleri ve işletmeden alınan geçmiş yıllara ait verilerle, bir matematiksel model kullanılarak çizelgeler oluşturulmuş, son olarak da firmada uygulanmış mevcut çizelgeler ile yeni bulunan çizelgeler karşılaştırılarak önerilen yöntemin etkinliği gösterilmiştir.

DETERMINATION OF EARLINESS AND TARDINESS COEFFICIENTS BY FUZZY AXIOMATIC DESIGN TECHNIQUE IN A SEQUENCE DEPENDENT SINGLE MACHINE SCHEDULING PROBLEM

In this study, it is aimed to reach a goal of finding a more realistic solution with considering  fuzzy values in case of solving production scheduling problem in a company which has to adapt just in time philosophy under severe competition conditions. A schedule is obtained with minimization of a penalty cost function considering production with punishing of earliness and lateness because of an objective is to deliver different due date products in just in time on a single machine in a company which functions in a food industry.Penalty coefficients of earliness and lateness are determined by an axiomatic design method under certain criteria. Schedules are obtained using a mathematical model with considering penalty values and company’s previous year’s data. Then, effectiveness of the proposed method is illustrated with comparing past schedules and schedules which are calculated by the proposed method.

___

  • 1. Babic, B. 1999. “Axiomatic Design of Flexible Manufacturing Systems,” International Journal of Production Research, vol. 37(5), p. 1159–1173.
  • 2. Baxter, J. E., Mckay, A., Agouridas, V., Pennington, A. 2002. “Supply Chain Design: An Application of Axiomatic Design,” Proceeding of Second International Conference on Axiomatic Design, June 10-11, Cambridge.
  • 3. Cochran, D. S., Reynal, V. A. 1996. “Axiomatic Design of Manufacturing Systems,” The Lean Aircraft Initiative Report Series, RP96-05-14.
  • 4. Choobineh, Fred F., Mohebbi, E., Khoo, H. 2006. “A Multi Objective Tabu Search for a Single Machine Scheduling Problem with Sequence-Dependent Setup Times,” European Journal of Operational Research, vol. 175, p. 318-337.
  • 5. Coleman, J. B. 1992. “Technical Note: A Simple Model for Optimizing the Single Machine Early/Tardy Problem with Sequence Dependent Setups,” Production and Operations Management, vol. 1(2), p. 225-228.
  • 6. Cotoia, M., Johnson S. 2001. “Applying The Axiomatic Approach to Business Process Redesign,” Business Process Management Journal, vol. 7(4), p. 304-322.
  • 7. Durmuşoğlu M. B, Kulak, O. 2008. “A Methodology for the Design of Office Cells Using Axiomatic Design Principles,” Omega, vol. 36(4), p. 633-652.
  • 8. Eren, T., Güner, E. 2007. “Sıra Bağımlı Hazırlık Zamanlı İki Ölçütlü Çizelgeleme Problemi: Toplam Tamamlanma Zamanı ve Maksimum Erken Bitirme,” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt 23 (1-2), p. 95-105.
  • 9. Gavett, W. J. 1965. “Three Heuristic Rules for Sequencing Jobs to a Single Production Facility,” Management Science, vol. 11(8), p. 166-176.
  • 10. Gunasekera, J. S., Ali, A. F. 1995. “A Three-Step Approach to Designing a Metal-Forming Process,” Journal of Management, vol.47 (6) p. 22–25.
  • 11. Houshmand, M., Jamshidnezhad, B. 2002. “Conceptual Design of Lean Production Systems Through An Axiomatic Design,” Proceedings of ICAD2002, second international conference on axiomatic design, Cambridge, p. 78-86.
  • 12. Kır, S. 2011. “Sıra Bağımlı Hazırlık Zamanlı Tek Makineli Çizelgeleme Problemleri: Gıda Sektöründe Bir Uygulama,” İstanbul Teknik Üniversitesi FBE Yüksek Lisans Tezi.
  • 13. Kulak, O. 2005. “A Decision Support System for Fuzzy Multi-Attribute Selection of Material Handling Equipment,” Expert Systems with Applications, vol. 29, p. 310-319.
  • 14. Kulak, O., Durmuşoğlu M. B, Tüfekçi, S. 2005. “A Complete Cellular Manufacturing System Design Methodology Based on Axiomatic Design Principles,” Computers and Industrial Engineering, vol. 48, p. 765-787.
  • 15. Ragatz, G. L. 1993. “A Branch And Bound Method for Minimum Tardiness Sequencing on A Single Processor with Sequence Dependent Set Up Times,” Proceedings of the 24th Annual Meeting of the Decision Science Institute, November 1993, New Orleans.
  • 16. Suh, N.P. 1990. The Principles of Design, Oxford University Press, New York.
  • 17. Suh, N. P. 2001. Axiomatic Design: Advances and Applications, Oxford University Press, New York.
  • 18. White, C. H., Wilson, R. C. 1977. “Sequence dependent set up times and job sequencing,” International Journal of Production Research, vol. 15, p. 191-201.
  • 19. Zadeh, A. L. 1965. “Fuzzy Sets,” Information and Control, vol. 8(3), p. 338-353.