Mikrodalga Dielektrik Spektroskopi ile Yumuşak Doku Ossifikasyon Tespiti

Mikrodalga frekanslarında sert ve yumuşak dokular arasındaki dielektrik özellik farkı, yumuşak doku kemikleşme anomalilerinin teşhisi için kullanılanılabilme potansiyeline sahiptir. Biyolojik dokuların mikrodalga frekanslarda dielektrik özellikleri geleneksel olarak açık uçlu koaksiyel prob tekniği ile ölçülür. Bununla birlikle, doku heterojenitesi, kullanıcı hataları, matematiksel yaklaşım ve kalibrasyon bozulması nedeniyle kullanılan teknik yüksek hata oranlarına sahiptir. İyi ayrılmış bir veriye makine öğrenimi algoritması uygulandığında verinin yüksek doğrulukta sınıflandırılabileceği bilinmektedir. Bu nedenle, tekniğe özgü hatalardan en az etkilenebilecek bir sınıflandırma parametresinin seçilmesi, doku kategorizasyonunun doğruluğunu artırmak için kritiktir. Emprik olarak, mikrodalga frekanslarındaki dielektrik özellikler güç yasasına uyar. Bu olguya göre daha önce araştırılmamış bir parametre, dielektrik özelliklerden çıkarılabilecek güç parametresidir. Bu amaçla bu makale, yumuşak doku ossifikasyon anomalilerini tespit etmek için dielektrik özellik eğim değerlerinin sınıflandırılmasına dayalı bir ön çalışma sunmaktadır. Bu yaklaşım muhtemelen yüksek maliyetli görüntüleme ve mutasyon tarama testlerine alternatif bir hızlı tanı yöntemi olarak kullanılabilir. The dielectric property discrepancy between hard and soft tissues at microwave frequencies can potentially be utilized for the diagnosis of soft tissues ossification anomalies. Microwave dielectric properties of biological tissues are traditionally measured with the open-ended coaxial probe technique. However, the technıque suffers from high error rates due to tissue heterogeneity, user errors, mathematical approach and calibration degredation. It is known that a well seperated data can be classified with high accuracy when a machine learnin algorithm is applied. Therefore, choosing a classification parameter that can be least affected by inherent errors is critical for increasing the accuracy of tissue categorization. Emprically, dielectric properties at microwave frequencies abides by the power law. Based on this fact, one unexplored parameter is the power parameter which can be derived from the dielectric properties. To this end, this work presents a preliminary study based on classification of dielectric property slope values to detect the soft tissue ossification anomalies. This approach can possibly be used as an alternative rapid diagnostic method to highcost imaging and mutation screening tests.

___

  • H. Sahin, S. Abdullazade, and M. Sanci, “Mature cystic teratoma of the ovary: a cutting edge overview on imaging features,” Insights into Imaging, vol. 8, no. 2, pp. 227–241, Jan. 2017.
  • F. Kikkawa et al., “Diagnosis of squamous cell carcinoma arising from mature cystic teratoma of the ovary,” Cancer, vol. 82, no. 11, pp. 2249–2255, Jun. 1998.
  • B. Cakmak, M. Nacar, N. Aliyev, D. Koseoglu, and Z. Ozsoy, “Mature cystic teratomas: Relationship between histopathological contents and clinical features,” Nigerian Journal of Clinical Practice, vol. 18, no. 2, p. 236, 2015.
  • A. Hackethal, D. Brueggmann, M. K. Bohlmann, F. E. Franke, H.-R. Tinneberg, and K. Münstedt, “Squamous- cell carcinoma in mature cystic teratoma of the ovary: systematic review and analysis of published data,” The Lancet Oncology, vol. 9, no. 12, pp. 1173–1180, Dec. 2008.
  • T. Yilmaz, “Multiclass Classification of Hepatic Anomalies with Dielectric Properties: From Phantom Materials to Rat Hepatic Tissues,” Sensors, 2020, vol. 20, pp. 530.
  • F. S. Kaplan, M. Le Merrer, D.L. Glaser, R. J. Pignolo, R. E. Goldsby, J. A. Kitterman, J. Groppe and E. M. Shore, “Fibrodysplasia ossificans progressiva,” Best Practice & Research Clinical Rheumatology, vol. 22, no. 1, pp. 191–205, Mar. 2008.
  • T. Yilmaz, M.A. Kılıç, M. Erdoğan, M. Çayören, D. Tunaoğlu, İ. Kurtoğlu, Y. Yaslan, H. Çayören, A. E. Arıkan, S. Teksöz and G. Cancan, “Machine learning aided diagnosis of hepatic malignancies through in vivo dielectric measurements with microwaves,” Physics in Medicine and Biology, vol. 61, no. 13, pp. 5089–5102, Jun. 2016.
  • M. Lazebnik et al., “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries,” Physics in medicine and biology, vol. 52, no. 20, pp. 6093–115, 2007.
  • C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Physics in medicine and biology, vol. 41, no. 11, pp. 2231–49, 1996.
  • A. La Gioia, E. Porter and I. Merunka, “Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices,” Diagnostics (Basel, Switzerland), vol. 8, no. 2, p. 40, 2018.
  • T. W. Athey, M. A. Stuchly, and S. S. Stuchly, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I,” IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 1, pp. 82–86, Jan. 1982.
  • M. A. Stuchly, T. W. Athey, G. M. Samaras, and G. E. Taylor, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II- Experimental Results,” IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 1, pp. 87–92, Jan. 1982.
  • W. Anderson, “Microwave biopsy probe- Anderson, Wendell,” Freepatentsonline.com, Apr. 2006.
  • P. J. Debye, “Polar molecules, “Chemical Catalog Company, Incorporated, 1929.
  • K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics,” The Journal of Chemical Physics, vol. 9, no. 4, pp. 341–351, Apr. 1941.
  • K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectrics II. Direct Current Characteristics,” The Journal of Chemical Physics, vol. 10, no. 2, pp. 98–105, Feb. 1942.
  • A. K. Jonscher, “Dielectric relaxation in solids,” Journal of Physics D: Applied Physics, vol. 32, no. 14, pp. R57–R70, Jan. 1999, doi: 10.1088/0022- 3727/32/14/201.
  • D. Andreuccetti, “Dielectric Properties of Body Tissues: Home page,” Ifac.cnr.it, 2018. [Online].
  • S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Physics in Medicine and Biology, vol. 41, no. 11, pp. 2251–2269, Nov. 1996.
  • S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Physics in Medicine and Biology, vol. 41, no. 11, pp. 2271–2293, Nov. 1996.
EMO Bilimsel Dergi-Cover
  • ISSN: 1309-5501
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: -