Quantitative Phase Macroscopic System for Label-Free Imaging of Tissue Sections

Optical microscopes are typically designed as versatile tools that are capable of imaging at various modalities with different resolutions in respective visual fields. A large extend of versatility causes increased complexity, size, and the cost. Imaging of tissue sections is a routine procedure in clinics and research laboratories. Tissue staining consumables, required time for staining along with the cost of the imaging systems are the limiting factors for widespread use. A multimode imaging system with enhanced resolution performance and automation is generally superfluous for the coarse resolution imaging of tissue sections. A dedicated system for label free tissue section imaging is presented. Label free imaging with high contrast is provided in form of quantitative phase. Earlier demonstrations of quantitative phase imaging of tissue sections utilized modified microscopes with different modalities for correlated imaging and motorized stages for field enlargement. Here, the system follows an off-axis digital holographic imaging configuration for the acquisition of quantitative phase at single shot. The system compromises from the resolution and magnification of a traditional microscope for the size of visual field, ease of use, and relative cost due to the exclusion of sample stages. A software level stitching further enlarges the effective field of view.

___

1. Y. Park, C. Depeursinge, G. Popescu, “Quantitative phase imaging in biomedicine”, Nature Photonics, vol. 12, no. 10, pp. 578-589, September, 2018. [CrossRef]

2. B. Kemper, G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection”, Applied Optics, vol. 47, no. 4, pp. A52-A61, February, 2008. [CrossRef]

3. K. M. Kim, “Principles and techniques of digital holographic microscopy”, SPIE reviews, vol. 1, no. 1, p.018005, April, 2010. [CrossRef]

4. U. Schnars, W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction”, Applied Optics, vol. 33, no. 2, pp. 179-181, January, 1994. [CrossRef]

5. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging”, Optics Letters, vol. 24, no. 5, pp. 291-293, March, 1999. [CrossRef]

6. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms”, Applied Optics vol. 38, no. 34, pp. 6994-7001, December, 1999. [CrossRef]

7. U. Schnars, W. Juptner, “Digital recording and numerical reconstruction of holograms”, Measurement Science and Technology, vol. 13, no. 9, pp. R85-R101, August, 2002. [CrossRef]

8. F. Montfort, Y. Emery, F. Marquet, E. Cuche, N. Aspert, E. Solanas, A. Mehdaoui, A. Ionescu, C. Depeursinge, “Process engineering and failure analysis of MEMS and MOEMS by Digital Holography Microscopy (DHM)”, in Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI, Proceedings of SPIE 6463, San Jose, January, 2007, pp. 64630G-1 - 64630G-7. [CrossRef]

9. D. A. Silage, J. Gil, “Digital image tiles: a method for the processing of large sections”, Journal of Microscopy. vol. 138, no. 2, pp. 221- 227, May,1985. [CrossRef]

10. M. C. Montalto, R. R. McKay, R. J. Filkins, “Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method”, Journal of Pathology Informatics, vol. 2, 2011. [CrossRef]

11. M. G. Rojo, G. B. García, C. P. Mateos, J. G. García, M. C. Vicente, “Critical comparison of 31 commercially available digital slide systems in pathology”, International Journal of Surgical Pathology, vol. 14, no. 4, pp. 285-305, October, 2006. [CrossRef]

12. G. Bueno, O. Déniz, M. D. M. Fernández‐Carrobles, N. Vállez, J. Salido, “An automated system for whole microscopic image acquisition and analysis”, Microscopy Research and Technique, vol. 77, no. 9, pp. 697-713, September, 2014. [CrossRef]

13. J. Liao, Y. Jiang, Z. Bian, B. Mahrou, A. Nambiar, A. W. Magsam, K. Guo, S. Wang, Y. ku Cho, G. Zheng, “Rapid focus map surveying for whole slide imaging with continuous sample motion”, Optics Letters, vol. 42, no. 17, pp. 3379-3382, September, 2017. [CrossRef]

14. P. Lenz, D. Bettenworth, P. Krausewitz, M. Brückner, S. Ketelhut, G. von Bally, D. Domagk, B. Kemper, “Digital holographic microscopy quantifies the degree of inflammation in experimental colitis”, Integrative Biology, vol. 5, no. 3, pp. 624-630, March, 2013. [CrossRef]

15. D. Bettenworth, A. Bokemeyer, C. Poremba, N. S. Ding, S. Ketelhut, P. Lenz, B. Kemper, “Quantitative phase microscopy for evaluation of intestinal inflammation and wound healing utilizing label-free biophysical markers”, Histol. Histopathol, vol. 33, pp. 417-432, May, 2018.

16. A. Bokemeyer, P. R. Tepasse, L. Quill, P. Lenz, E. Rijcken, M. Vieth, N. Ding, S. Ketelhut, F. Rieder, B. Kemper, D. Bettenworth, “Quantitative phase imaging Using Digital Holographic Microscopy Reliably Assesses Morphology and Reflects Elastic Properties of fibrotic intestinal tissue”, Scientific Reports, vol. 9, no. 1, pp. 1-11, December, 2019. [CrossRef]

17. Z. Wang, G. Popescu, K. V. Tangella, A. Balla, “Tissue refractive index as marker of disease”, Journal of Biomedical Optics, vol. 16, no. 11, p.116017, November, 2011. [CrossRef]

18. M. Takabayashi, H. Majeed, A. Kajdacsy-Balla, G. Popescu, “Disorder strength measured by quantitative phase imaging as intrinsic cancer marker in fixed tissue biopsies”, PloS one, vol. 13, no. 3, March, 2018. [CrossRef]

19. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy”, Optics Letters, vol. 30, no. 5, pp.468-470, March, 2005. [CrossRef]

20. E. Cuche, P. Marquet, C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography”, Applied Optics, vol. 39, no. 23, pp. 4070-4075, August, 2000. [CrossRef]

21. S. de Nicola, A. Finizio, G. Pierattini, P. Ferraro, D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes”, Optics Express, vol. 13, no. 24, pp. 9935-9940, November, 2005. [CrossRef]

22. L. Yu, M. Kim, “Pixel resolution control in numerical reconstruction of digital holography”, Optics Letters, vol. 31, no. 7, pp. 897-899, April, 2006. [CrossRef]

23. T. Colomb, F. Montfort, C. Depeursinge, “Small reconstruction distance in convolution formalism,” in Digital Holography and Three-Dimensional Imaging, St. Petersburg, FL, March, 2008. [CrossRef]

24. D. Wang, J. Zhao, F. Zhang, G. Pedrini, W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms”, Applied Optics, vol. 47, no. 19, pp. D12-D20, July, 2008. [CrossRef]

25. P. Langehanenberg, L. Ivanova, S. Ketelhut, D. Dirksen, G. Georgiev, G. von Bally, I. Bernhardt, “Automated three-dimensional tracking of living cells by digital holographic microscopy”, Journal of Biomedical Optics, vol. 14, no. 1, pp. 014018-1 – 014018-7, January-February, 2009. [CrossRef]

26. P. Langehanenberg, B. Kemper, D. Dirksen, G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging”, Applied Optics, vol. 47, no. 19, pp. D176-D182, July, 2008. [CrossRef]

27. M. F. Toy, J. Kühn, S. Richard, J. Parent, M. Egli, C. Depeursinge, “Accelerated autofocusing of off-axis holograms using critical sampling”, Optics Letters, vol. 37, no. 24, pp. 5094-5096, December, 2012. [CrossRef]

28. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge, “Characterization of microlenses by digital holographic microscopy”, Applied Optics, vol. 45, no. 5, pp. 829-835, February, 2006. [CrossRef]

29. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging”, Applied Optics, vol. 42, no. 11, pp. 1938- 1946, April, 2003. [CrossRef]

30. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation”, Applied Optics, vol. 45, no. 5, pp. 851-863, February, 2006. [CrossRef]
Electrica-Cover
  • ISSN: 2619-9831
  • Başlangıç: 2001
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Performance Analysis of Implanted Hybrid Three Quasi Z source Inverter designed for Renewable Energy Conversion Applications

Ramanjaneyulu ALLA, Anandita CHOWDHURY

Secrecy Capacity Analysis of an Underlay Cognitive Radio Network in the Presence of Co-channel and Primary Network Interference

Emre BAYAT, SULTAN ALDIRMAZ ÇOLAK

Energy-Efficient Clustering-Based Mobile Routing Algorithm For Wireless Sensor Networks

Baybars KARABEKİR, M. Ali AYDIN, Abdul Halim ZAİM

State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables

Mudang TARO, Saibal CHATTERJEE

A Case Study on Fraudulent User Behaviors in the Telecommunication Network

H. Hakan KİLİNC

The Research of Gain Adaptive Linear Extended State Observer (ALESO) Based Active Disturbance Rejection Speed Control For Permanent Magnet Synchronous Motor

Yinsheng Lİ, Yongjun CHEN

Three Speed Controllers of Direct Torque Control for a Doubly Fed Induction Motor Drive–A Comparison

Mohammed El MAHFOUD, Badre BOSSOUFİ, Najib El OUANJİLİ, Said MAHFOUD, Mohammed TAOUSSİ

Comparative Performance Analysis of Slime Mould Algorithm For Efficient Design of Proportional–Integral–Derivative Controller

Davut İZCİ, Serdar EKİNCİ

Adaptive Backstepping Sliding Mode Control for ABS with Nonlinear Disturbance Observer

FATİH ADIGÜZEL, Tarık Veli MUMCU

Features of Wall-Mounted Luminaires with Different Types of Light Sources

Demid V. PEKUR, Viktor M. SOROKİN, Yurii E. NİKOLAENKO