Sac Malzeme Yüzey Pürüzlülüğünün Fiber-Metal Tabakalı Kompozitlerin Mekanik Özelliklerine Olan Etkisi

Fiber-metal tabakalı kompozitlerin kullanımının özellikle havacılık gibi endüstrilerde giderek yaygınlaşmasıyla bu tür malzemelerin mekanik performanslarının incelenmesi de oldukça önemli hale gelmiştir. Matris ve takviye malzemesinin özelliklerinin, operatör tecrübesinin ve üretim yönteminin nihai ürünün kullanım performansı üzerinde doğrudan etkisinin olduğu bilinmektedir. Bu çalışma da yüzeyi 60, 220 ve 600 kum zımpara ile mekanik olarak farklı pürüzlülük değerlerinde işlenen 1050 serisi alüminyum sac malzeme, cam elyaflarla tabakalı kompozit olarak üretilmiş ve mekanik özellikleri incelenmiştir. Buna göre numunelerin çekme, üç nokta eğilme ve tabakalar arası kayma gerilmesi değerleri ölçülmüş ve hasar durumları makro görüntüler üzerinden değerlendirilmeye çalışılmıştır. Elde edilen sonuçlara göre yüzey pürüzlülüğü arttıkça mekanik dayanım da artmaktadır. Bu çalışma ile fiber-metal tabakalı kompozitlerin yeni kullanım alanları ve tasarım parametreleri ile ilgili önemli sonuçlar elde edilmiştir.

The Effect of Sheet Material Surface Roughness on Mechanical Properties of Fiber-Metal Laminated Composites

With the increasing use of fiber-metal laminated composites, especially in aerospace industries, it has become vital to examine the mechanical performance of these materials. It is known that the properties of the matrix and the reinforcement material, the experience of the operator, and the production method have a direct effect on the usage performance of the final product. In this study, the 1050 series aluminum sheet materials, which are mechanically pre-treated with 60, 220, and 600 grit of sandpaper in different roughness values, were produced as a fiber-metal laminated composite with glass fibers, and its mechanical properties were investigated. Accordingly, the tensile, three-point bending and interlaminar shear strength values of the samples were measured, and the damage conditions were evaluated by macro imaging. According to the results, the mechanical strength improved when the sur-face roughness increased. This study has achieved significant outcomes regarding the new usage areas and fiber-metal laminated composites' design parameters.

___

  • [1]. Yanen, C., Solmaz, M.Y. Tabakalı hibrit kompozitlerin bireysel zırh malzemesi olarak üretimi ve balistik performanslarının incelenmesi. El-Cezerî Fen ve Mühendislik Dergisi, 2016, 3(2): 351–362.
  • [2]. İlhan, R., Feyzullahoğlu, E. Cam elyaf takviyeli polyester (ctp) kompozit malzemelerde kullanılan doğal elyaflar ve dolgu maddeleri. El-Cezerî Fen ve Mühendislik Dergisi, 2019, 6(2): 355–381.
  • [3]. Çakır, M., Berberoğlu, B. E-cam elyaf takviyeli epoksi matrisli kompozit malzemelerin elyaf oranındaki artış ile mekanik özelliklerindeki değişimlerin incelenmesi. El-Cezerî Fen ve Mühendislik Dergisi, 2018, 5(3): 734–740.
  • [4]. Cortes, P., Cantwell, W.J. The prediction of tensile failure in titanium-based thermoplastic fibre–metal laminates. Composite Science and Technology, 2006, 66: 2306–2316.
  • [5]. Asundi, A., Choi, A.Y.N. Fiber metal laminates: an advanced material for future aircraft. Journal of Materials Processing Technology, 1997, 63: 384–394.
  • [6]. Villanueva, G.R., Cantwell, W.J. The high velocity impact response of composite and FML-reinforced sandwich structures. Composite Science and Technology, 2004, 64: 35–54.
  • [7]. Vogelesang, L.B., Vlot, A. Development of fibre metal laminates for advanced. Journal of Materials Processing Technology, 2000, 103: 1–5.
  • [8]. Pekbey, Y., Aslantaş, K., Yumak, N. The effect of hybridization on the ballistic ımpact behavior of nanostructured hybrid composite plates. El-Cezerî Journal of Science and Engineering, 2020, 7(1): 124-134.
  • [9]. Alderliesten, R.C., Benedictus, R. Fiber/metal composite technology for future primary aircraft structures. In: 48th Aiaa/Asme/Asce/Ahs/Asc structures, structural dynamics, and materials conference 15th; April 23–26, 2007, Honolulu, Hawaii, 1–12
  • [10]. Chang, P.Y., Yeh, P.C., Yang, J.M. Fatigue crack initiation in hybrid boron/glass/ aluminum fiber metal laminates. Materials Science and Engineering: A, 2008, 496: 273–280.
  • [11]. Sinmazçelik, T., Avcu, E., Bora, M.Ö., Çoban, O. A review: Fibre metal laminates, background, bonding types and applied test methods, Materials and Design, 2011, 32: 3671–3685.
  • [12]. Jakubczak, P., Bienias, J., Surowska, B. Interlaminar shear strength of fibre metal laminates after thermal cycles, Composite Structures, 2018, 206: 876–887.
  • [13]. Da Costa, A.A., Da Silva, D.F.N.R., Travessa, D.N., Botelho, E.C. The effect of thermal cycles on the mechanical properties of fiber–metal laminates. Material and Design, 2012, 42: 434–440.
  • [14]. Rosselli, F., Santare, M.H. Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests. Composites Part A: Applied Science and Manufacturing, 1997, 28(6): 587–594.
  • [15]. Bosbach, B., Gerngross, M.B., Heyden, E., Gerngross, M.D., Carstensen, J., Adelung, R., Fiedler, B. Reaching maximum inter-laminar properties in GFRP/nanoscale sculptured aluminium ply laminates, Composites Science and Technology, 2018, 167: 32–41.
  • [16]. Dadej, K., Bienias, J., Surowska B. Residual fatigue life of carbon fibre aluminium laminates, International Journal of Fatigue, 2017, 100: 94–104.
  • [17]. Fan, Z., Santare, M.H., Advani, S.G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, Composites: Part A, 2008, 39: 540–554.
  • [18]. Park, S.Y., Choi, W.J., Choi, H.S., Kwon, H., Kim, S.H. Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995–2008). The Journal of Adhesion, 2010, 86: 192–221.
  • [19]. Harris, A.F., Beevers, A. The effects of grit-blasting on surface properties for adhesion. International Journal of Adhesion and Adhesives, 1999, 19: 445–452.
  • [20]. Critchlow, G.W., Yendall, K.A., Bahrani, D., Quinn, A., Andrews, F. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. International Journal of Adhesion and Adhesives, 2006, 26: 419–453.
  • [21]. Kinloch, A.J. Adhesion and adhesives, Chapman & Hall, London, 1987.
  • [22]. Baldan, A. Review adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment, Journal of Materials Science, 2004, 39: 1-49.
  • [23]. Chawla, K.K. Composite materials: science and enginnering Springer Science+Business Media, New York, 2012.
  • [24]. Kim, J.K., Mai, Y.W. Engineered interfaces in fiber reinforced composites Elsevier Science, Oxford, 1998.
  • [25]. Flinn, R.A., Trojan, P.K. Engineering materials and their applications Jaico Publishing House, 2006.
  • [26]. Su, Y., De Rooij, M., Grouve, W., Akkerman, R. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints, International Journal of Adhesion and Adhesives, 2017, 72: 98-108.
  • [27]. https://www.pinarmetal.com/aluminyum.html (Erişim Tarihi:25-02-2021)
  • [28]. https://www.kompozit.net/mgs-laminasyon-epoksi-seti-l160-h160-set-a-b (Erişim Tarihi:12-01-2021)
  • [29]. https://www.kompozit.net/cam-fiber-kumas-300-gr-m2-twill-1m2 (Erişim Tarihi:12-01-2021)
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği