Marmara Denizi'nde İzmit Körfezinde Ağır Metal Toksisitesinin, Pleksiglas Substratta Biyofilm Oluşumu ile Biyoizlenmesi

Bu çalışmada, Biyofilm oluşumu ile İzmit Körfezi'ndeki ağır metallerde kısa süreli değişimleri gözlemlemek için pleksiglas substratlar kullanılmıştır. Substratlar sonbahar mevsiminde yerleştirildi ve üç defada iki haftalık periyot ile toplandı. Metallerin ortalama birikim değerleri, Fe>Mn>Zn>Cu>Pb>Cr>Ni>Cd sırasına göre azalmıştır.  Aynı eğilim, istisnasız olarak sonbaharın ilk ve üçüncü örneklerinde de gözlenmiştir. İkinci numunenin sırası, Fe> Mn> Zn> Pb> Cr> Cu> Ni> Cd şeklindeydi. Bulunan 37 türün 22'si Bacillariophyceae'ye, 2'si Cyanophyceae'ye ve 13 türü Dinophyceae taxa'ya aittir. Bacillariophyceae toplam koloninin yaklaşık % 55'ini oluştururken,% 38 Dinophyceae ve % 7'si Cyanophyceae taxa türlerinden oluşmuştur. Toplam biyolojik yoğunluk değerleri 22362, 23513 ve 21348 hücre/ml'dir. Çeşitli inkübasyon günlerinde (15, 30 ve 45), artan inkübasyon süresinin her zaman tüm türlerin yoğunluklarında ve biyofilmlerin toplam yoğunluğunda bir artışa yol açmadığı görülmüştür. Metal seviyeleri büyük değişiklikler göstermedi. Varyasyonlar çok anlamlı olmamakla birlikte, bazı metallerle toplam alg topluluğunun% 85'ini kaplayan ilk üç baskın türün göreceli bolluğunda düşük korelasyonlar gözlenmiştir.

Biomonitoring of Heavy Metal Levels in Izmit Gulf in Marmara Sea with Biofilm Formation in Plexiglass Substrate

In this study, plexiglas substrates were used for biofilm formation to observe short-term variations in heavy metals in Izmit Gulf. The substrates were inserted and collected in a two-week period as three times in the autumn season. The averaged accumulation values of metals were decreased in the order of Fe>Mn>Zn>Cu>Pb>Cr>Ni>Cd. The same trend was observed in the first and third samples of the autumn without any exception in the sequence. The order for the second sample was as Fe>Mn>Zn>Pb>Cr>Cu>Ni>Cd. Among the 37 species found, 22 belonged to Bacillariophyceae, 2 species to Cyanophyceae and 13 species to Dinophyceae taxa. While Bacillariophyceae consisted of about 55 % of total colony, 38 %  and 7 % comsosed of species of Dinophyceae and Cyanophyceae taxa, respectively. Total biodensity values are 22362, 23513 and 21348 cell/ml. For various incubation days (15, 30 and 45), it was seen that increasing incubation time would not always result in the increase in densities of all species and total density of biofilms. Metal levels did not show big variations. Low correlations were observed in relative abundances of first three dominant species occupying around 85 % of total algal community with some metals, though the variations are not much significant. 

___

  • [1] Mustafa, S., Hashmi, M.I., Tariq, S.A., 2002. Heavy metal concentrations in water and tiger prawn (Penaeus monodon) from grow-out farms in Sabah, North Borneo. Food Chemistry 79, 151–156.
  • [2] Phillips D.J.H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments_ a review. Environmental Pollution 13, 281-317.
  • [3] Campanella L., Conti M.E., Cubadda F., Sucapane C., 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution 111, 117-126.
  • [4] Binelli, A., Provini, A., 2003. The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere 53, 143–151.
  • [5] Fialkowski W., Calosi P., Dahlke S., Dietrich A., Moore P.G., Olenin S., Persson L.E., Smith B.D., Špegys M., Rainbow P.S., 2009. The sandhopper Talitrus saltator (Crustacea: Amphipoda) as a biomonitor of trace metal bioavailabilities in European coastal waters. Marine Pollution Bulletin 58, 39–44.
  • [6] Cairns J., van der Schalie, W.H., 1980. Biological monitoring, Part I—Early warning systems. Water Res. 14, 1179–1196.
  • [7] Landner L, Blanck H, Heyman U, Lundgren A, Notini M, Rosemarin A, Sundelin B, 1989. Community testing, microcosm and mesocosm experiments. Ecotoxicological tools with high ecological realism. Springer Ser. ENVIRON. MANAGE, 216-254.
  • [8] Newman M.C., McIntosh A.W., 1989. Appropriateness of aufwuchs as a monitor of bioaccumulation. Environ. Pollut. 60, 83–100.
  • [9] Sekar R., Nair K.V.K., Rao V.N.R., Venugopalan V.P., 2002. Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biol. 47, 1893–1907.
  • [10] Burkholder J.M., 1996. Interactions of benthic algae with their substrata. In: Stevenson R.J., Bothwell M.L., Lowe R.L. (Eds.), Algal Ecology of Freshwater Benthic Ecosystems, Aquatic Ecology Series. Academic Press, Boston, pp. 253–298.
  • [11] Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedw. 64, 285-304.
  • [12] Steinberg, C., Schiefele, S., 1988. Biological indication of trophy and pollution of running waters. Z. Wasser Abwasser Forsch 21, 227e234.
  • [13] Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 28, 117e133.
  • [14] Kröpfl K., Vladár P., Szabó K., Acs E., Borsodi AK., Szikora S., Caroli S., Záray G., 2006. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144(2), 626-631.
  • [15] McCormick P.V., Cairns J., 1994. Algae as indicators of environmentalchange. Journal of Applied Phycology 6, 509-526.
  • [16] Nocker A, Lepo JE, Martin LL, Snyder RA. Response of Estuarine Biofilm Microbial Community Development to Changes in Dissolved Oxygen and Nutrient Concentrations. Microbial Ecology ; 2007, 54(3):532-542.
  • [17] Porsbring T, Arrhenius, Backhaus T, Kuylenstierna M, Scholze M, Blanck H. The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology ; 2007, 349(2):299-312.
  • [18] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fu¨er Theoretische und Angewandte Limnologie 9, 1-38.
  • [19] Lund JWG., Kipling C, Le Cren ED. (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:2, pp. 143-170.
  • [20] Krammer, K., Lange-Bertalot, H., 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. – G. Fischer Verlag.
  • [21] Ivorra N., Hettelaar J., Tubbing G.M.J., Kraak M.H.S., Sabater S., Admiraal W., 1999. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Archives of Environmental Contamination and Toxicology 37, 19-28.
  • [22] Newman, M.C., Alberts, J.J., Greenhut, V.A., 1985. Geochemical factors complicating the use of aufwuchs to monitor bioaccumulation of arsenic, cadmium, chromium, copper and zinc. Water Res. 19, 1157-1165.
  • [23] Hill, W.R., Bednarek, A.T., Larsen, I.L., 2000b. Cadmium sorption and toxicity in autotrophic biofilms. Can. J. Fish. Aquat. Sci. 57, 530-537.
  • [24] Foster PL. Species associations and metal contents of algae from river polluted by heavy metals. Freshwat Biol, 2, 17–39.
  • [25] Behra, R., Landwehrjohann, R., Vogel, K.,Wagner, B., Sigg, L., 2002. Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquat. Sci. 64, 300–306.
  • [26] Novis P.M., Harding J.S., 2007. Extreme Acidophiles: freshwater algae associated with acid mine drainage. In: Seckbach, J. (Ed.), Algae And Cyanobacteria In Extreme Environment. Springer, The Netherlands, pp. 443–463.
  • [27] Elbaz-Poulichet F., Dupuy C., Cruzado A., Velasqaez Z., Achterberg E.P., Braungardt C.B., 2000. Influence of sorption process by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Water Research 34, 3222–3230.
  • [28] Brake S.S., Hasiotis S.T., Dannely H.K., 2004. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiology Journal 21, 331–340.
  • [29] Aksu Z., Açikel U., 1999. A single-staged bioseparation process for simultaneous removal of copper(II) and chromium(VI) by using C. vulgaris. Process Biochem. 34, 589–599.
  • [30] Yaşar D., Aksu A.E., Uslu O., 2001. Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish Journal of Engineering and Environmental Sciences 25, 299–313.
  • [31] Blanco, S., Becares, E., 2010. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79, 18–25. [32] Coste, M., Duong, T.T., Feurtet-Mazel, A., Dang, D.K., Boudou, A., 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecological Indicators 7, 839–851. [33] Ivorra, N., Barranguet, C., Johker, M., Kraak, M.H.S., Admiraal,W., 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ. Pollut. 116, 147–157.
  • [34] Gustavson, K., Wängberg, S.A., 1995. Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat. Toxicol. 32, 283–302.
  • [35] De Jonge, M., Van de Vijver, B., Blust, R., Bervoets, L., 2008. Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates. Sci. Total Environ. 407, 615–629.
  • [36] Chen, C.S., Tien, C-J., Wu, W-H., Chuang, T-L., 2009. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality. Chemosphere 76, 1288–1295.
  • [37] Biggs, B.J.F., 1988. Artificial substrate expose times for periphyton biomass estimates in rivers. NZ J. Mar. Freshwater. Res. 22, 507–515.
  • [38] Hoagland, K.D., Roemer, S.C., Rosowski, J.R., 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188–213.
  • [39] Ivorra, N., Bremer, S., Guasch, H., Kraak, MHS., Admiraal, W., 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxic Chem 19(5), 1332–9.
  • [40] Freeman, C., Lock, MA., 1995. The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40(2), 273–8.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği
Sayıdaki Diğer Makaleler

Gerilim Kararlılığının Farklı İşletme Şartlarında İncelenmesi

Salih TOSUN, Ali ÖZTÜRK

Katı durumdaki glycine tertbutyl ester hydrochloride and L-α-alanin eter ester’de oluşan serbest radikallerin similasyon metodu ile incelenmesi

Yunus Emre OSMANOĞLU

Bulanık İstatistiksel Proses Kontrol Tekniği İle 19x39x19 cm Bims Hafif Yapı Malzemesi Üretiminin Analizi

Kader KAPLAN GÖZTOK, Metin UÇURUM, Akın ÖZDEMİR

Kenar Bulma Algoritmaları Kullanarak Diş Röntgen Görüntülerinden Yaş ve Cinsiyet Belirleme

Fatih BAŞÇİFTÇİ, Emre AVUÇLU

Farmasötik İlaçta İzoprenalin Tayini İçin Potansiyometrik Sensör Geliştirilmesi

Gülşah SAYDAN KANBEROĞLU, Oktay ÖZARSLAN

AISI 316 L Paslanmaz Çelik ile Fe60Al40 Metaller arası Bileşiğin Sürtünme Kaynağı ile Birleştirilmesi

İbrahim ÇELİKYÜREK, Osman TORUN, Bedri BAKSAN, Akın ÖZCAN

Kivi Meyvesinin İnce Tabaka Kurutma Karakteristiklerinin ve Sorpsiyon Özelliklerinin Saptanması

Bahar DİKEN, Merve EREMKERE, Gülizar DEMİRTAŞ, Birol KAYİŞOĞLU, Türkan AKTAŞ

Bir Aracın Hareket Yönüne Konumlanmasının Bulanık Mantık İle Gerçekleştirilmesi

Önder YAKIŞTIRAN, Mustafa YAZ

Atık İnsan Saçının Grafenoksit Olarak Değerlendirilmesi ve Bazı Karakteristik Özelliklerinin İncelenmesi

Vagif NEVRUZOĞLU, Derya BAL ALTUNTAŞ

Sıcak Haddelenmiş Çelik Hollanda Profillerinin Bilgisayar Destekli Tasarımı, Analizi ve İmalatı

Mehmet AKKAŞ, Burak ÖNDER, Ezgi SEVGİ, Osman ÇULHA