Farmasötik İlaçta İzoprenalin Tayini İçin Potansiyometrik Sensör Geliştirilmesi

Bu çalışmada, farmasötik etken madde olan izoprenalinin tayini için potansiyometrik iyon seçici bir elektrot (İSE) geliştirildi. Bu amaçla, ilk olarak, İP-FM, İP-TSA, İP-TPB, İP-REY, İP-FTA iyon çiftleri sentezlendi. Sentezlenen iyon çiftleri elektrot membranının yapısında iyonofor olarak kullanıldı. Membran optimizasyonunu sağlamak için sentezlenen iyon çiftleri kullanılarak çeşitli bileşimlerde PVC membran elektrotlar üretildi. Bu elektrotların potansiyometrik performans özellikleri araştırıldı. En iyi potansiyometrik performans özelliklerinin % 3.0 İzoprenalin-Tetrafenilborat iyon çifti, % 64 Nitrofeniloktileter (NPOE), % 32.0 Polivinilklorür (PVC), % 1 Potasyum tetrakis (4-klorofenil) borat (KTpClPB) bileşimine sahip membran kullanılarak elde edildi. Bu elektrodun doğrusal çalışma aralığının 5.0x 10-6 M-1.0x 10-1 M ve 10 katlık konsantrasyon değişimindeki eğimi, 45,3 mV; tayin limiti, 5.0x10-6 M; pH çalışma aralığı 2.6-3.6 ve 5.7-7.9; cevap zamanı < 5 sn olarak belirlendi. Elektrot oldukça tekrarlanabilir bir potansiyometrik cevap sergilemiştir. İzoprenalin içeriği, izoprenalin seçici elektrot kullanılarak ilaçta tayin edildi.  

Development of Potentiometric Sensor for Determination of Isoprenaline in Pharmaceutical Drug

In this study, a potentiometric ion-selective electrode (ISE) was developed for the determination of isoprenaline, a pharmaceutical active substance. For this purpose, initially, IP-PM, IP-TCA, IP-TPB, IP-REY, IP-PTA ion pairs were synthesized. The synthesized ion pairs were used as the ionophore in the structure of the electrode membrane. In order to ensure membrane optimization, PVC membrane ion selective electrodes were produced in various compositions using the synthesized ion pair and the potentiometric performance characteristics of these electrodes were investigated. It was determined that the best potentiometric performance characteristics were obtained with the PVC membrane electrode in the composition of 3.0% isoprenaline-tetrafenylborate ion pair, %64.0 nitrophenyloctylether, 32.0% polyvinylchloride and %1.0 Tetrakis (4-chlorophenyl) boron potassium compound. The linear operating range of this electrode is 5.0x 10-6 M - 1.0x 10-1 M and the slope at the 10-fold concentration change is 45.3 mV; determination limit, 5.0x10-6 M, pH working range, 2.6-3.6 and 5.7-7.9; response time < 5s. The electrode exhibited a reproducible potentiometric response. Isoprenaline content was determined in drug by using the isoprenaline selective electrode. 

___

  • [1] H. Beitollahi, I. Sheikhshoaie, Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode, Electrochim. Acta. 56 (2011) 10259–10263. doi:10.1016/j.electacta.2011.09.017.
  • [2] D. Voet, J.G. Voet, Pyruvate Dehydrogenase Multienzyme Complex, Biochem. 2nd Ed. 269 (1995) 541.
  • [3] K.O. Lupetti, I.C. Vieira, O. Fatibello-Filho, Flow injection spectrophotometric determination of isoproterenol using an avocado (Persea americana) crude extract immobilized on controlled-pore silica reactor, Talanta. 57 (2002) 135–143. doi:10.1016/S0039-9140(01)00681-6.
  • [4] P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal. 22 (2000) 781–789. doi:10.1016/S0731-7085(00)00291-0.
  • [5] J.J.B. Nevado, J.M.L. Gallego, P.B. Laguna, Spectrophotometric determination of catecholamines with metaperiodate by flow-injection analysis, Anal. Chim. Acta. 300 (1995) 293–297. doi:10.1016/0003-2670(94)00395-3.
  • [6] L. Gámiz-Gracia, A.M. García-Campaña, J.F. Huertas-Pérez, F.J. Lara, Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis-A review, Anal. Chim. Acta. 640 (2009) 7–28. doi:10.1016/j.aca.2009.03.017.
  • [7] H. yang Zhang, X. Chen, P. Hu, Q. lin Liang, X. ping Liang, Y. ming Wang, G. an Luo, Metabolomic profiling of rat serum associated with isoproterenol-induced myocardial infarction using ultra-performance liquid chromatography/time-of-flight mass spectrometry and multivariate analysis, Talanta. 79 (2009) 254–259. doi:10.1016/j.talanta.2009.03.045.
  • [8] M.E. Hadwiger, S. Park, S.R. Torchia, C.E. Lunte, Simultaneous determination of the elimination profiles of the individual enantiomers of racemic isoproterenol using capillary electrophoresis and microdialysis sampling, J. Pharm. Biomed. Anal. 15 (1997) 621–629. doi:10.1016/S0731-7085(96)01896-1.
  • [9] V.G. Bonifácio, L.H. Marcolino, M.F.S. Teixeira, O. Fatibello-Filho, Voltammetric determination of isoprenaline in pharmaceutical preparations using a copper(II) hexacyanoferrate(III) modified carbon paste electrode, Microchem. J. 78 (2004) 55–59. doi:10.1016/j.microc.2004.03.010.
  • [10] A. Kutluay, M. Aslanoglu, Electrocatalytic oxidation of isoproterenol and its voltammetric determination in pharmaceuticals and urine samples using a poly(1-methylpyrrole) -DNA modified electrode, Acta Chim. Slov. 57 (2010) 157–162.
  • [11] F. Mashige, Y. Matsushima, C. Miyata, R. Yamada, H. Kanazawa, I. Sakuma, N. Takai, N. Shinozuka, A. Ohkubo, K. Nakahara, Simultaneous determination of catecholamines, their basic metabolites and serotonin in urine by high‐performance liquid chromatography using A mixed‐mode column and an eight‐channel electrochemical detector, Biomed. Chromatogr. 9 (1995) 221–225. doi:10.1002/bmc.1130090506.
  • [12] A.A. Ensafi, M. Dadkhah, H. Karimi-Maleh, Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil, Colloids Surfaces B Biointerfaces. 84 (2011) 148–154. doi:10.1016/j.colsurfb.2010.12.028.
  • [13] A.A. Ensafi, H.K. Maleh, A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol, Int. J. Electrochem. Sci. 5 (2010) 1484–1495.
  • [14] E. Pretsch, The new wave of ion-selective electrodes, TrAC - Trends Anal. Chem. 26 (2007) 46–51. doi:10.1016/j.trac.2006.10.006.
  • [15] A.A. Ensafi, A. Allafchian, B. Rezaei, PVC membrane selective electrode for determination of isoproterenol based on naphthylethylenediamine dihydrochloride–tetraphenyl boranuide, Anal. Bioanal. Electrochem. 7 (2015) 569–581.
  • [16] R.P. Buck, E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem. 66 (2007) 2527–2536. doi:10.1351/pac199466122527.
  • [17] Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report), Pure Appl. Chem. 72 (2000) 1851–2082. doi:10.1351/pac200072101851.