Kolofan Tabanlı Biyo-Epoksi Reçinesinin Mekanik Özellikleri

Boyama, yapıştırma ve kaplama gibi çeşitli endüstriyel alanlarda yaygın olarak kullanılan epoksi reçineleri, termoset grubuna ait reçinelerdir. Yüksek mekanik özelliklere sahip olan bu reçineler kompozit malzeme üretiminde matris malzemesi olarak kullanılırlar. Epoksi reçinelerinin cam, karbon veya aramid gibi liflerle birleştirilmesiyle üretilen kompozit malzemeler uzay, denizcilik ve havacılık uygulamalarında kullanılmaktadır. Epoksi reçinelerinin çoğu endüstriyel olarak üretilmekte ve üretim safhasında kullanılan hammaddeler büyük oranda petrol esaslı olmaktadır. Petrol esaslı malzemeler yerine biyo-tabanlı bitkisel malzemeler üretmek her geçen gün daha da önemli hale gelmektedir. Bu malzemeler petrole bağımlılığı azaltmakta ve doğada bolca bulunan ve ucuz olan bitkisel materyallerin kullanımını teşvik etmektedir. Bu çalışmada, petrol bazlı epoksi reçinesi ile çam reçinesinden elde edilen kolofan maddesi belirli oranlarda birleştirilerek biyo-tabanlı bir epoksi reçinesi üretildi ve bu reçinenin mekanik ve termal özellikleri incelendi.

Mechanical Properties of Rosin-based Bio-epoxy Resin

Epoxy resins which are widely used in various industrial fields such as painting, bonding, and coating, are resins of thermosetting group. These resins, which have high mechanical properties, are used as matrix material in composite material production. Composite materials produced by combining epoxy resins with fibers such as glass, carbon or aramid, are used in aerospace, marine and aviation applications. Most of the epoxy resins are industrially produced and the raw materials used in the production phase are largely petroleum-based. Today, it is increasingly important to produce bio-based plant materials instead of petroleum-based materials. These materials reduce dependence on petroleum and encourage the use of cheaper plant materials found abundantly in the environment. In this study, a bio-based epoxy resin was produced by combining petroleum-based epoxy resin and rosin obtained from wood resin at certain ratios. Then, their mechanical and thermal properties were investigated.

___

  • Ellis, B., (1993). Chemistry and Technology of Epoxy Resins. Chapman & Hall, British Library eBook, p.342
  • Park, S.-J., Jin, F.-L. and Lee, J.-R., (2004). Synthesis and Thermal Properties of Epoxidized Vegetable Oil. Macromolecular Rapid Communications, 25(6), p.724–727.
  • Liu, Z., Erhan, S.Z. and Xu, J., (2005). Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer, 46(23), p.10119–10127.
  • Paramarta, A., and Webster, D.C., (2016). Bio-based high performance epoxy-anhydride thermosets for structural composites: The effect of composition variables. Reactive and Functional Polymers, 105; p.140–149.
  • Xia, Y. and Larock, R.C., (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 12(11); p.1893–1909.
  • Miao, S., Wang, P., Su, Z. and Zhang, S., (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4); p.1692–1704.
  • Auvergne, R., Caillol, S., David, G., Boutevin, B. and Pascault, J.-P., (2013). Biobased thermosetting epoxy: present and future. Chemical Reviews, 114(2); p.1082–1115.
  • [8] Raquez, J.M., Deléglise, M., Lacrampe, M.F. and Krawczak P., (2010). Thermosetting (bio)materials derived from renewable resources: a critical review. Progress in Polymer Science, 35(4): p.487–509.
  • Montero de Espinosa L. and Meier, M.A.R., (2011). Plant oils: the perfect renewable resource for polymer science?!. European Polymer Journal, 47(5); p.837–852.
  • Coppen J.J.W. and Hone G.A., (1995). Gum Naval Stores: Turpentine and Rosin from Pine Resin. UN Food and Agriculture Organization, chap. 1.
  • Maiti, S., Ray, S.S. and Kundu, A.K., (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), p.297-338.
  • Liu, X., Xin, W. and Zhang, J., (2009). Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chemistry, 11(7); p.1018–1025.
  • Liu, X., Xin, W. and Zhang, J., (2010). Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresource technology, 101(7); p.2520-2524.
  • Atta, A.M., Mansour, R., Abdou, M.I., El-Sayed, A.M., (2005). Synthesis and characterization of tetra-functional epoxy resins from rosin. Journal of Polymer Research, 12(2); p.127-138.
  • Deng, L., Ha, C., Sun, C., Zhou, B., Yu, J., Shen, M., and Mo, J., (2013). Properties of Bio-based Epoxy Resins from Rosin with Different Flexible Chains. Industrial & Engineering Chemistry Research, 52(37), p.13233−13240.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği