Hidrojen Üretimi Amaçlı Entegre Güneş Enerjisi Temelli Kimyasal Reaktör Sisteminin Termodinamik Analizi

Yenilenebilir enerji temelli sistemlerinin en büyük avantajı bu enerji sistemlerinin çok az emisyon yaydıklarından dolayı çevre dostu olmalarıdır. Parabolik yalak tipi kolektör sistemleri güneş radyasyonunu kullanarak termal enerji üretmektedirler. Parabolik yalak tipi kolektörler yoğunlaştırıcı kolektörler arasında en yaygın olarak kullanılanlardan biridir. Özellikle orta sıcaklıklı güneş enerjisi üretim sistemleri için oldukça elverişlidirler. Isı transferinin neden olduğu tersinmezliklerden dolayı güneş enerjisini depolamak uygun bir yöntem değildir. Bunun yerine, güneş enerjisini kullanarak hidrojen üretmek daha akılcı bir seçenek olmaktadır. Parabolik yoğunlaştırıcı kolektör sayesinde, 475 K sıcaklığının altında gerçekleşen reaksiyonlarda salınan HO ve CO su-gaz değişim reaksiyonunda kullanılarak hidrojen üretilebilir. Üretilen hidrojen enerji sistemlerinde kullanılabilmekte veya kimyasal endüstride değerlendirilebilmektedir. Ayrıca açığa çıkan karbondioksit gazı da seralarda ya da karbon sanayisinde kullanılabilmektedir. Su-gaz dönüşüm reaksiyonları güneş enerjisinden uzun dönemli depolanabilir enerji üretiminde avantaja sahiptirler. Ayrıca bu dönüşüm reaksiyonları sayesinde güneş kuşağında elde edilen enerji güneşlenme oranı düşük olan yerlere enerjinin taşınmasına olanak sağlamaktadır. Bu çalışmada silindirik parabolik reaktörün daha iyi değerlendirilmesi için termodinamiğin ikinci yasasını temel alan ekserji analizi kullanılmıştır. Parabolik kolektörün ekserji kayıpları, enerji ve ekserji analizleri kullanılarak bu çalışmada sunulmuştur. Güneş enerjisi dönüşüm sisteminin ekserji analizi termal ve ekonomik sınırlılıkları göz önünde bulundurarak optimum sistemi elde etmede yardımcı olmaktadır. Çalışma sonuçlarına göre, en yüksek ekserji yıkım oranları kolektörde ve alıcı alt sistemlerinde gerçekleşmektedir. Teorik analiz sonuçları sistem bileşenlerinin analizinde parabolik kolektörün tersinmezliğinin hesaplanmasında kullanılabilmektedir. 

Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production

The biggest advantage of the renewable energy based systems is that these energy systems are environmentally friendly, since they emit very few pollutants. The solar parabolic trough collector systems generate thermal energy by using solar radiation. These renewable energy systems are the most deployed type of the solar concentrating collectors. Especially, they are very suitable for middle-temperature solar power system applications. Storing of the solar energy is not a suitable way due to the irreversibility production associated with the heat transfer. Instead of that, solar energy should be used to produce hydrogen energy using a solar reactor system. By using the parabolic concentrating collectors, hydrogen may be produced by applying water-gas shift reaction with H2O and CO which emitted to atmosphere by any reaction under 475 K. Produced hydrogen can be used in energy generation systems or chemical industries while carbon dioxide can be used in green houses or carbon industry. The water-gas shift reactions have the benefit of generating long term storable energy carriers from the solar radiation. This conversion also allows transportation of solar radiation from the sunbelt to remote population centers. This paper gives a second law analysis based on an exergy concept for the simple solar cylindrical parabolic reactor for a better evaluation. The scientific approach of detailed energy and exergy analyses of the solar cylindrical parabolic reactor and dispersion of the exergy losses are presented in this study too. Exergy analysis of the solar energy conversion processes helps to investigate the optimum system that covers the imposed thermal and economic limitations. In this paper, it is given that the highest exergy losses take place at the solar collector and receiver sub-system. The outcomes  of theoretical analysis should be used for analyzing the system components and irreversibilities of the solar cylindrical parabolic reactor.          

___

  • Laquil, P.D., Kearney, D., Geyer, M., Diner, R., “Solar Thermal Electricity Technology”, Renewable Energy (Executive Editor: Laurie Burnham), Island Press, Washington D.C., 1993.
  • Kreith, F., West, R.E., “CRC Handbook of Energy Efficiency”, CRC Press, Boca Raton, Florida, 1997.
  • Winter, C.J., Sizmann, R.L., Vant-Hull, L.L., “Solar Power Plants”, Springer, New York, 1991.
  • Kodama, T., High-temperature solar chemistry for converting solar heat to chemical fuels. Progress in Energy and Combustion Science. 29, 567-597, 2003.
  • Eskin, N., Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results. Energy Conversion and Management. 40, 175-191, 1999.
  • Newsome, D.S., The water-gas shift reaction. Catalysis Reviews Science and Engineering, 21 (2), 275-381, 1980.
  • Hua, N., Wang, H., Du, Y., Shen, M., Yang, P., Ultrafine Ru and γ-Fe2O3 particles supported on MgAl2O4 spinel for water-gas shift reactions. Catalysis Communications, 6, 491-496, 2005.
  • Lian, H., Jia, M., Wei-cheng, P., Wen-xiang, Z., Da-zhen, J., Copper Promoted Add ZnO-CuO Catalysts for Low Temperature Water-gas Shift Reaction, Chemical Research in Chinese Universities, 22(1), 99-102, 2006.
  • Ozturk, M., Dincer, I., Thermodynamic Analysis of a Solar-based Multi-generation System with Hydrogen Production. Applied Thermal Engineering, 51, 1235-1244, 2013.
  • Ozturk, M., Dincer, I., Thermodynamic Assessment of an Integrated Solar Power Tower and Coal Gasification System for Multi-generation Purposes. Energy Conversion and Management, 76, 1061-1072, 2013.
  • Singh, N., Kaushik, S.C., Misra, R.D., Exergetic Analysis of a Solar Thermal Power System. Renewable Energy, 19, 135-143, 2000.
  • Magal, B.S., Solar Power Engineering, Tata McGraw-Hill, 1994.
  • Haught, A.P., Physical consideration of solar energy conversion. ASME Journal of Solar Energy Engineering. 106, 3-15, 1984.
  • Chelghoum, D.E., Bejan, A., Second law analysis of solar collector with energy storage capacity. ASME journal of solar energy engineering, 107, 244-251, 1985.
  • Moran, M.J., Shapiro, H.N., Fundamentals of Engineering Thermodynamics, Fourth Edition, Wiley, New York, 2000 .
  • Dincer, I., Rosen, M.A., Exergy: Energy, Environment and Sustainable Development, Second Edition, Elsevier, Oxford, UK, 2013.
  • You, Y., Hu, E.J., A Medium-Temperature Solar Thermal Power System and Its Efficiency Optimization. Applied Thermal Engineering, 22, 357-364, 2002.
  • Moran, M.J., Availability Analysis, ASME Press, New York, 1989.
  • Ozturk, M., Ucgul, I, Ozek, N., Heat and Chemical Exergy Analysis of Parabolic Trough Collector, 6.th International Conference of the Balkan Physical Union, see http://proceedings.aip.org/proceedings/eper.jsp, pp 425-426, Istanbul, 2006.
  • Ozturk, M., Bezir, N.C., Ozek, N., Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors, Chinese Physics Letters, Vol. 24, No 7, pp 1787-1790, 2007.
  • Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Printed and bound in Great Britain by Anchor Brendon Ltd., 1985.
  • Dincer, I. Exergetic and Sustainability Aspects of Green Energy Systems. Clean, 35(4), 311-322, 2007.
  • Petela, R., Exergy analysis of the solar cylindrical-parabolic cooker. Solar energy, 79, 221-233.