Binek Tipi Yakit Hücreli Bir Aracın Advisor Tabanlı Modellenmesi ve Hareket Dirençlerinin Batarya Performansına Etkisi

: Elektrik tahrikli araçların performanslarını etkileyen en önemli faktörler batarya teknolojileri ve hareket dirençleridir. Batarya teknolojilerinin araç performansına etkisi üzerinde çok miktarda araştırma yapılmasına rağmen hareket dirençleri (yuvarlanma direnci, hava direnci, yokuş direnci, transmisyon direnci) ve aksesuar kayıplarının araç performansına etkisi üzerine yapılan araştırma sayısı oldukça azdır. Bu çalışmada binek tipi yakıt hücreli bir aracın ADVISOR simülasyon programında modellemesi yapılarak hareket dirençleri ve aksesuar kayıplarının araç batarya performansına etkisi incelenmiştir. Simülasyon sonucunda NEDC sürüş çevrimine göre düşük yuvarlanma direncine sahip lastiğin SOC (State of Charge) değeri yüksek yuvarlanma dirençli lastikten % 2.2 daha yüksek, C_x A değerinin 2 kat azaltılması SOC değerinde % 1.3 azalma meydana getirmiştir. Transmisyon seçiminin taşıt batarya performansına bakıldığında vites kutusu dişli oranlarındaki farklılıklar sebebiyle 5 hızlı vites kutusunda daha yüksek sürtünme kayıpları meydana gelmiş, aksesuar yüklerinin 700 W yerine 1000 W olması ortalama SOC değerinin % 1.4 azalmasına neden olmuştur. Yolun eğimi ile ilgili yapılan simülasyonlarda % 5 yol eğiminde (yokuş) düşük yuvarlanma direncine sahip lastik kullanımı SOC değerinin % 2 daha yüksek elde edilmesini sağlamıştır. %5 yol eğiminde (iniş) ise düşük yuvarlanma direncine sahip lastik kullanılması durumunda SOC değeri % 2.2 daha yüksek elde edilmiştir.

Advisor-Based Modelling of a Passenger-Type Fuel Cell Vehicle and the Effect of Movement Resistances on Battery Performance

The most important factors affecting the performance of electric driven vehicles are battery technology and movement resistance. Although many researches have been made on vehicle performance of battery technologies, the number of researches on the effect of movement resistances (rolling resistance, air resistance, road gradient resistance, transmission resistance) and accessory loss on vehicle performance is quite limited. In this study, modelling of a passenger-type fuel cell vehicle has been made on ADVISOR (ADVISOR-Advanced Vehicle Simulator) simulation programme, and effect of movement resistances and accessory losses on battery performance has been examined. At the end of the simulation, it has been determined that SOC (State of Change) value of the tire with low rolling resistance according to NEDC (New European Driving Cycle) driving cycle is higher than the tire with high rolling resistance by 2.2%; and that decrease of C_x A by two times has resulted in a decrease in SOC value by 1.3%. When vehicle-battery performance of transmission selection has been examined, it has been observed that higher friction loss occurred in 5-speed gearbox due to the differences between the gear rations of the gearbox, and average SOC value decreased by 1.4% due to the fact that accessory load was 1000 W instead of 700 W. During simulations made with relation to the incline of the road, usage of tire with low rolling resistance on road incline (ascend) of 5% resulted in a higher value of SOC by 2%. And on road incline (descend) of 5%, usage of tire with low rolling resistance resulted in a higher value of SOC by 2.2%.

___

  • [1]. Pehnt, M. (2001). Life-cycle assessment of fuel cell stacks. Hydrogen Energy 26, 10, 91–101.
  • [2]. Kunt M. A. (2019). Tümüyle Elektrikli Binek Tipli Bir Aracın ADVISOR Tabanlı Modellenmesi ve Aerodinamik Direnç Değişiminin Batarya Performansına Etkisi Üzerine Bir Çalışma. The 1st Internatıonal Symposium on Automotive Science and Technology (ISASTECH2019), Ankara, 5-6 September 2019.
  • [3]. Yuan, X., Li, L., Gou, H., Dong, T. (2015). Energy and environmental impact of battery electric vehicle range in China. Applied Energy 157, 75-84.
  • [4]. Cicero-Fernândez, P., Long, J. R., Winer A. M. (1997). Effects of grades and other loads on on-road emissions of hydrocarbons and carbon monoxide. J. Air Waste Manage. Assoc. 47, 898–904.
  • [5]. Zhang, K. S., Frey, H. C. (2006). Road grade estimation for on-road vehicle emissions modelling using light detection and ranging data. J. Air Waste Manage. Assoc. 56, 777–788.
  • [6]. Boroujeni, B.Y., Frey, H. C., Sandhu, G. S. (2013). Road grade measurement using in-vehicle, stand-alone GPS with barometric altimeter. J. Transp. Eng. 139, 605–611.
  • [7]. Turkmen, A. C, Solmaz, S., Cenk, C. (2017). Analysis of fuel cell vehicles with ADVISOR software. Renewable and Sustainable Energy Reviews 70, 1066–1071.
  • [8]. Markel, T., Wipke, K., Haraldsson, K., Kely, K., Vlahinos, A. (2003). Fuel cell vehicle systems analysis. hydrogen, Fuel Cells and Infrastructure Technologies Annual Program Review.
  • [9]. Amac, A., Aras, U., Sahin, Y. G., Yorukeren, N. (2011). Comparative performance analysis of batteries in hybrid vehicles. Energy Effic. Qual. Symp. 2011.
  • [10]. Zhang, Y., Zhang, C. (2011). ADVISOR and Its Application in Electric Vehicle Simulation. Proceedings of the 30th Chinese Control Conference, July 2011.
  • [11]. Suvak, H., Erşan, K. (2017). The simulation of a full electric vehicle using the city cycle. International Journal of Automotive Engineering and Technologies 5, 2, 38-46.
  • [12]. Boisvert, M., Mammosser, D., Micheau, P., Desrochers, A. (2013). Comparison of two strategies for optimal regenerative braking, with their sensitivity to variations in mass, slope and road condition. IFAC Proceedings 46, 21, 626-630.
  • [13]. SAE Standartları Testleri. (2019). .
  • [14]. Kunt, M. A. (2019). Tümüyle Elektrikli Binek Tipli Bir Araçta Yuvarlanma Direnci Değişiminin İvmelenme Performansı ve Transmisyon Kayıplarına Etkisi Üzerine Bir Çalışma. The International Conference of Materials and Engineering Technology (TICMET’19). Gaziantep, Türkiye, 10-12 Ekim 2019.
  • [15]. Travesset-Baro, O., Rosas-Casals, M., Jover, E. (2015). Transport energy consumption in mountainous roads. Transp. Res. Part D: Transp. Environ. 34, 16–26.
  • [16]. Fiori C, Ahn K, Rakha HA. (2016). Power-based electric vehicle energy consumption model: model development and validation. Appl. Energy 168, 257–268. [17]. Wyatt, D. W., Li, H., Tate, J. E. (2014).The impact of road grade on carbon dioxide (CO2) emission of a passenger vehicle in real-world driving. Transp. Res. Part D: Transp. Environ. 32, 160–170.
  • [18]. Sun, X. H., Yamamoto, T., Morikawa, T. (2015). Stochastic frontier analysis of excess access to mid-trip battery electric vehicle fast charging. Transp. Res. Part D: Transp. Environ. 34, 83–94.
  • [19]. Liu, K., Yamamoto, T., Morikawa, T. (2017). Impact of road gradient on energy consumption of electric vehicles. Transportation Research Part D 54, 1, 74–81.
  • [20]. Mruzek, M., Gajdáč, I., Ľuboš, K., Barta, D. (2016). Analysis of parameters influencing electric vehicle range. Procedia Engineering 134, 165–174.
  • [21]. Aktaş, U., Abdallah, K. (2017). Aerodynamics Concept Study of Electric Vehicles, Master’s thesis. Sweden: Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Chalmers University of Technology Gothenburg.
  • [22]. Hucho, W. H. Aerodynamics of road vehicles, 4 th edition, SAE International, Warrendale, PA, ISBN: 978-0-7680-0029-0, 1998.
  • [23]. Robinette, R. (2017). Mazda Miata CFD Generated Aerodynamic Info, .
  • [24]. Palin, R., Johnston, V., Johnson, S. (2012). The aerodynamic development of the Tesla Model S - Part 1: Overview. SAE Int. doi:10.4271/2012-01-0177.
  • [25]. Littlewoodd, R, Passmore, M. (2010). The optimization of roof trailing edge geometry of a simple square-back. SAE Technical Paper 2010-04-12.
  • [26]. Soares, R. F., De Souza, F. J. (2015). The Brazilian automotive scenario over the hatch 2015 car models: A view from aerodynamics. SAE Technical Paper 2015-36-0518. [27]. Daryakenari, B., Abdullah, S., Zulkifli, R. (2013). Reducing vehicle drag force through a tapered rear side wall. SAE Int. J. Commer. Veh. 6, 582-588. https://doi.org/10.4271/2013-01-9020.
  • [28]. Kumar, A., Singh, A., Regin, A. F. (2015). Study on effect of ground clearance on performance of aerodynamic drag reduction devices for passenger vehicle using CFD simulations. SAE Technical Paper 2015-26-0197.
  • [29]. Ishihara, Y., Takagi, H., Asao, K. (2011). Aerodynamic development of the new developed electric vehicle. SAE Technical Paper 2011-39-7230.
  • [30]. Sterken, L., Lofdahl, L., Sebben, S., Walker, T. (2014). Effect of rear-end extensions on the aerodynamic forces of an SUV. SAE Technical Paper 2014-01-0602.
  • [31]. Kang, S., Cho, J., Jun, S., Park, H., Song, K. (2012). A Study of an active rear diffuser device for aerodynamics drag reduction of automobiles. SAE Technical Paper 2012-01-0173.
  • [32]. Don, S. (2019). Dragqueens: aerodynamics compared. Car and Driver, .
  • [33]. Owen, E. C., Steiber, J. (1997). Development of Auxiliary Power Units for Electric Hybrid vehicle, Southwest Research Institute San Antonio, Texas.
  • [34] Güneş, H. Design and manufacture of tube type nonhollow linear generators for suspension systems of electric and hybrid cars. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. March 2021. doi:10.1177/09544089211000016
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği