Farklı bölgelerden toplanan Morchella sp. cinsi mantarların askokarplarında ve toprakta besin elementi kapsamları

Amaç: Bu çalışma, Morchellaceae familyasından, yenilebilen ve ekonomik öneme sahip bir mantar türü olan Morchella cinsi türlerinin ve doğal yayılım gösterdikleri toprakların besin element kapsamlarını belirlemek amacıyla yürütülmüştür. Materyal ve Yöntem: Morchella cinsine ait 26 adet örnek toplanmış ve 9 tür tespit edilmiştir. Klasik sistematik yöntemlerle teşhis edilen türler: M. angusticeps, M. conifericola, M. dunensis ve M. esculenta olup, moleküler yöntemlerle teşhis edilen türler ise: M. dunalii, M. frustrata M. impotuna, M. tridentina ve M. fekeensis’dir. Araştırma Bulguları: Toprak örneklerinin analizlerinde (min-max): N; 0.02-1.11%, P; 2-101, K; 40-462, Ca; 1288–13558, Fe; 11-276 ve Zn; 0.6-8.59 ppm olarak belirlenmiştir. Morchella mantarlarının askokarpında ise (min-max): N; (%) 3.18-8.76, P; 0.72-1.97, K; 1.99-5.02, Ca; 0.02-1.11, Mg; 0.10-0.62, Fe; 119-2811, Cu; 11-50, Mn; 17-195 ve Zn; 87-276 ppm olarak belirlenmiştir. Sonuç: Elde edilen sonuçlara göre, 4 Morchella örneğinde Fe miktarları 1084-2811 ppm aralığında saptanmış ve bazı Morchella türlerinin “olası Fe-hiperakümülatör” özellikte olduğu sonucuna varılmıştır.

Nutrient contents of soils and ascocarps of Morchella sp. mushrooms collected from different regions

Objective: The objective of this study was to investigate the nutrient content of Morchella genus species and the soils in which they naturally spread, which is an edible and economically important mushroom species from the Morchellaceae family. Material and Methods: A total of 26 samples of Morchella genus were collected and 9 species were identified. Species identified by classical systematic methods were M. angusticeps, M. conifericola, M. dunensis and M. esculenta and the species identified by molecular methods were M. dunalii, M. frustrata M. impotuna, M. tridentina, M. fekeensis. Results: In the analysis of soil samples, (as min-max): N; 0.02-1.11%, P; 2-101, K; 40-462, Ca; 1288–13558, Fe; 11-276 and Zn; 0.6-8.59 ppm as were determined. In the ascocarp of the Morchella mushroom samples (min-max): N; (%) 3.18-8.76, P; 0.72-1.97, K; 1.99-5.02, Ca; 0.02-1.11, Mg; 0.10-0.62, Fe; 119-2811, Cu; 11-50, Mn; 17-195 and Zn; 87-276 ppm as were determined. Conclusion: According to the results obtained, Fe contents in the 4 Morchella samples were determined in the range between 1084 and 2811 ppm and it was concluded that some Morchella species had “probable Fe-hyperaccumulatory” charactertistics.

___

  • Ak, E.E., Y. Tüzel, E. Eren & F. Atilla, 2016. Evaluation of Turkey mushroom export. Turkish Journal of Agriculture-Food Science and Technology, 4 (3): 239-243. https://doi.org/10.24925/turjaf.v4i3.239-243.606
  • Bayuk, B.G., K. Gezer & O. Kaygusuz, 2016. Mushrooms exported from Denizli province and nutrient content. International Journal of Secondary Metabolite, 3 (1): 27-38.
  • Bellion, M., M. Courbot, C. Jacob, D. Blaudez & M. Chalot, 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254 (2): 173-181. https://doi.org/10.1111/j.1574-6968.2005.00044.x
  • Blaudez, D., C. Jacob, K. Turnau, J.V. Colpaert, U.A. Jonnarth, R. Finlay, B. Botton & M. Chalot, 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 104 (11): 1366-1371. DOI: https://doi.org/10.1017/S0953756200003166
  • Borovička, J., Z. Řanda & E. Jelínek, 2006. Antimony content of macrofungi from clean and polluted areas. Chemosphere, 64 (11): 1837-1844. https://doi.org/10.1016/j.chemosphere.2006.01.060
  • Borovička, J. & Z. Řanda, 2007. Distribution of Fe, Co, Zn and Se in macrofungi. Mycological Progress, 6 (4): 249. https://doi.org/10.1007/s11557-007-0544-y
  • Çoban-Yıldız, Y., G. Chiavari, D. Fabbri, A.F. Gaines, G. Galletti & S.Tuğrul, 2000. The chemical composition of Black Sea suspended particulate organic matter: pyrolysis-GC/MS as a complementary tool to traditional oceanographic analyses. Marine Chemistry, 69 (1-2): 55-67. https://doi.org/10.1016/S0304-4203 (99)00093-6
  • Drbal, K., P. Kalač, A. Šeflová & J. Šefl, 1975. Iron and manganese content in some edible macrofungi. Czech Mycology, 29: 110-114.
  • Du, X.H., Q. Zhao, Z.L. Yang, K. Hansen, H. Taşkin, S. Büyükalaca & D. Dewsbury, 2012. How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia, 104 (6): 1351-1368. https://doi.org/10.3852/12-056
  • Duran, C., H. Taşkın & S. Büyükalaca, 2011. Adana ili Feke ilçesinde bulunan Sedir Mantarı (Tricholoma anatolicum)’nın ekolojik isteklerinin belirlenmesi. Alatarım, 10 (1): 42-49.
  • Durkan, N., I. Ugulu, M.C. Unver, Y. Dogan & S. Baslar, 2011. Concentrations of trace elements aluminum, boron, cobalt and tin in various wild edible mushroom species from Buyuk Menderes River Basin of Turkey by ICPOES. Trace Elements and Electrolytes, 28 (4): 242. DOI: 10.5414/TEX01198
  • Elmastas, M., I. Turkekul, L. Ozturk, I. Gulcin, O. Isildak & H.Y. Aboul-Enein, 2006. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Combinatorial Chemistry & High Throughput Screening, 9 (6): 443-448. https://doi.org/10.2174/138620706777698544
  • Falandysz, J. & J. Borovička, 2013. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology, 97 (2): 477-501. https://doi.org/10.1007/s00253-012-4552-8
  • Fomina, M.A., I.J. Alexander, J.V. Colpaert & G.M. Gadd. 2005. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 37 (5): 851-866. https://doi.org/10.1016/j.soilbio.2004.10.013
  • Friese, W., 1929. Über die mineralbestandteile von Pilzen. Zeitschrift für Untersuchung der L.mittel., 57 (6): 604-613.
  • Gençcelep, H., Y. Uzun, Y. Tunçtürk & K. Demirel, 2009. Determination of mineral contents of wild-grown edible mushrooms. Food Chemistry, 113 (4): 1033-1036. https://doi.org/10.1016/j.foodchem.2008.08.058
  • Gücin, F., 1993. Kozak yaylasında (Bergama-İzmir) yetişen ve ihraç potansiyeli olan kuzu göbeği (Morchella) Mantarları, Ekoloji Dergisi, 6: 22-27.
  • Gürsoy, N., C. Sarikurkcu, M. Cengiz & M.H. Solak, 2009. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 47 (9): 2381-2388. https://doi.org/10.1016/j.fct.2009.06.032
  • Hall, J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53 (366): 1-11. https://doi.org/10.1093/jexbot/53.366.1
  • Iqbal, M., 1993. International trade in non-wood forest products: An overview. Written Paper. Rome, Italy, Food and Agriculture Organization of the United Nations, 111 pp.
  • Kabata-Pendias, A. & H. Pendias, 2000. Trace Elements in Soils and Plants. 3rd Ed., CRC Press, Boca Raton, 432 pp.
  • Kacar, B. & V.Katkat, 2007. Bitki Besleme. Nobel Yayın No: 849, 3. Basım, 659 s.
  • Kacar, B. & V.Katkat, 2008. Bitki Analizleri. Nobel Yayın No: 1241, 1. Basım, 892 s.
  • Kacar, B., 2009. Toprak Analizleri. Nobel Yayın No: 1387, Genişletilmiş 2. Basım, 467 s.
  • Kalac, P., 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113 (1): 9-16. https://doi.org/10.1016/j.foodchem.2008.07.077
  • Kalac, P., 2010. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chemistry 122, 2-15. DOI : 10.1016/j.foodchem.2010.02.045
  • Kalyoncu, F., M. Oskay & M. Kalyoncu, 2009. The effects of some environmental parameters on mycelial growth of six Morchella species. Journal Pure Applied Microbiology 3 (2): 467-472.
  • Kalyoncu, F., M. Oskay & H. Kayalar, 2010. Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology, 1 (3): 195-199. https://doi.org/10.1080/21501203.2010.511292
  • Keleş, A., H. Gençcelep & K. Demirel, 2017. Elemental composition of naturally growing wild edible mushroom. Journal of Natural Product and Plant Resources, 7: 37-44.
  • Lalotra, P., D. Gupta, R. Yangdol, Y.P. Sharma & S.K. Gupta, 2016. Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Current Research in Environmental & Applied Mycology, 6 (3): 159-165. Doi 10.5943/cream/6/3/2
  • Landeweert, R., E. Hoffland, R.D. Finlay, T.W. Kuyper & N. van Breemen, 2001. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals (Review). Trends in Ecology & Evolution, 16 (5): 248-254. https://doi.org/10.1016/S0169-5347(01)02122-X
  • Lavola, A., P.J. Aphalo & T. Lehto, 2011. Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi. Mycorrhiza, 21 (3): 155-165. https://doi.org/10.1007/s00572-010-0321-7
  • Li, X.L., H. Marschner & E. George, 1991. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root to shoot transport in white clover, Plant and Soil, 136: 49-57. https://doi.org/10.1007/BF02465219
  • Michelot, D., E. Siobud, J.C. Dore, C. Viel & F. Poirier, 1998. Update of metal contentproles in mushrooms toxicological implications and tentative approachtothe mechanisms of bioaccumulation. Toxicon, 36 (12): 1997-2012. https://doi.org/10.1016/S0041-0101 (98)00131-7
  • Morselt, A.F., W.T. Smits & T. Limonard, 1986. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant and Soil, 96 (3): 417-420.
  • Nitha, B., P.V. Fijesh & K.K. Janardhanan, 2013. Hepato protective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Experimental and Toxicologic Pathology, 65 (1-2): 105-112. https://doi.org/10.1016/j.etp.2011.06.007
  • O’Donnell, K., A.P. Rooney & G.L. Mills, 2011. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genetics and Biology, 48 (3): 252–265. https://doi.org/10.1016/j.fgb.2010.09.006
  • Özturk, İ., S.S. Sahan, U. Sahin, L, Ekici & O. Sagdic, 2010. Bioactivity and mineral contents of wild-grown edible M. conica in the Mediterranean Region. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5: 453–457. https://doi.org/10.1007/s00003-010-0625-8
  • Pilz, D., R. McLain, S. Alexander & J.E. Smith, 2007. Ecology and management of morels harvested from the forests of western North America. Portland, Oregon, USDA General Technical Report PNW-GTR-710.
  • Rossbach, M., E. Kümmerle, S. Schmidt, M. Gohmert, C. Stieghorst, Z. Revay & N. Wiehl, 2017. Elemental analysis of Morchella esculenta from Germany. Journal of Radioanalytical and Nuclear Chemistry, 313 (1): 273-278. https://doi.org/10.1007/s10967-017-5298-7
  • Salt, D.E., R.D. Smith & I. Raskin, 1998. Phytoremediation. Annual Review of Plant Biology, 49 (1): 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643
  • Sarıkurkçu, C., B. Tepe, M.H. Solak & S. Cetinkaya, 2012. Metal concentrations of wild edible mushrooms from Turkey. Ecology of Food and Nutrition, 51 (4): 346-363. https://doi.org/10.1080/03670244.2012.674448
  • Scherzinger, W., 1996. Naturschutz im Wald. Ulmer Verlag. Stuttgart, 447 pp.
  • Sevindik, M., C.E. Eraslan & H. Akgül, 2015. Bazı makrofungus türlerinin ağır metal içeriklerinin belirlenmesi. Ormancılık Dergisi, 11 (2): 48-53.
  • Szefer, P., 2007. Chemometric tech. in analytical evaluation of food quality. Mineral Components in Foods, 69-122.
  • Tamer, A.Ü., F. Gücin & M.H. Solak, 2006. Mikolojiye Giriş. Celal Bayar Üniversitesi, 9-10.
  • Taşkın, H., S. Büyükalaca, K. Hansen & K. O’Donnell, 2012. Multilocus phylogenetic analysis of true morels (Morchella) reveals high levels of endemics in Turkey relative too ther regions of Europe. Mycologia, 104 (2): 446-461. https://doi.org/10.3852/11-180
  • Taşkın, H., H.H. Doğan & S. Büyükalaca, 2015. Morchella galilaea, an autumn species from Turkey. Mycotaxon, 130 (1): 215-221. DOI: 10.5248/130.215
  • TÜİK, 2017. Konularına göre istatistikler: Tarım istatistikleri, Bitkisel üretim istatistikleri, Başka yerde sınıflandırılmamış diğer sebzeler, Türkiye İstatistik Kurumu, https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111, 02/2022.
  • Tüzel, Y. & K. Boztok, 1987. Morchella türlerinin tanımı ve başlıca özellikleri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 24 (2): 223-231.
  • Tüzen, M., 2003. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74 (3): 289-297. https://doi.org/10.1016/S0026-265X (03)00035-3
  • Winder, R.S., 2006. Cultural studies of Morchella elata. Mycological Research, 110 (5): 612-623. https://doi.org/10.1016/j.mycres.2006.02.003
  • Wondratschek, I. & U. Röder, 1993. Monitoring of heavy metals in soils by higher fungi. Plants as Biomonitors, 365-378.
  • Yalçin, I., F. Barthas & M. Barrot, 2014. Emotional consequences of neuropathic pain: insight from preclinical studies. Neuroscience & Biobehavioral Reviews, 47: 154-164. https://doi.org/10.1016/j.neubiorev.2014.08.002
  • Yang, D.K., 2014. Fundamentals of Liquid Crystal Devices. John Wiley & Sons. U.S.A. 592 pp.
  • Yıldız, A., Ö.F. Yeşil, Ö. Yavuz & M. Karakaplan, 2005. Organic elements and protein in some macrofungi of South East Anatolia in Turkey. Food Chemistry, 89 (4): 605-609. https://doi.org/10.1016/j.foodchem.2004.03.015
  • Yurdakul, İ., 2015. Kirletilmiş topraklarda ve sularda bitkisel iyileştirme teknikleri ve önemi. Türkiye Tarımsal Araştırmalar Dergisi, 2 (1): 55-62.
Ege Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1018-8851
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1964
  • Yayıncı: Prof. Dr. Banu YÜCEL
Sayıdaki Diğer Makaleler

Üreticilerin iklim değişikliğine uyum çerçevesinde çevresel tutumlarının belirlenmesi: Küçük Menderes havzası örneği

Yarkın AKYÜZ, Ela ATIŞ

Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi

Fatma Gül GÖZE ÖZDEMİR, Bekir TOSUN, Arif ŞANLI, Tahsin KARADOĞAN

Koyunculuk faaliyetinin sürdürülebilirliği: İzmir İli örneği

Kenan KESKİNKILIÇ, Canan ABAY

Isolation of ascorbate peroxidase (APX) gene in lentil (Lens culinaris Medik.) and expression analysis under drought stress conditions

Melike BAKIR, Cebrail YILDIRIM

Türkiye’nin Iğdır İli’nde sararma ve çalımsı görünüm gösteren biber bitkilerinde ‘Candidatus phytoplasma trifolii’nin varlığı

Abdullah GÜLLER, Mustafa USTA, Gülüstan KORKMAZ, Serap DEMİREL, Zeynelabidin KURT

Türkiye’de koyun ırklarının mevcut durumu ve geleceği: Ege Bölgesi

Turgay TAŞKIN, Çağrı KANDEMİR

Optimization of the performance of a metering unit for precision seeding of Coriander seeds (Coriandrum sativum L.) using Box-Behnken Design

Hürkan Tayfun VAROL, Adnan DEĞİRMENCİOĞLU

İzmir Büyükşehir Belediyesi’nin kırsal kalkınmaya yönelik hizmet kalitesinin değerlendirilmesi: Bergama ve Ödemiş ilçeleri örneği

Selda GÖKÇE, Tülay TİTİZ, Fatih ÖZDEN, Ferruh IŞIN

Şeftali yaprağındaki kortikal hücrelerin, ksilem damarların ve klorofil biyosentezin asetilsalisilik asit ve sodyum nitroprussid ile iyileştirilmesi

Servet ARAS

Etlik piliçlerde taşıma stresinin göğüs eti kalite özellikleri üzerine etkisinin belirlenmesi: meta-analiz

Hüseyin Cem GÜLER, Çiğdem ŞEREMET TUĞALAY