Apeksifikasyondan Apeksogenezise Geleneksel ve Güncel Tedavi Yöntemleri

Bu derlemenin amacı; herhangi bir sebeple canlılığını kaybetmiş, olgunlaşmamış, genç daimi dişlerin gelişimlerinin tamamlanabilmesi için çocuk diş hekimliğinde rutin olarak kullanılan geleneksel tedavi yöntemleri ve günümüzde sıklıkla kullanılmaya başlanan rejeneratif yöntemleri ele almak ve konu ile ilgili yapılmış çalışmaları sunarak gelecekteki klinik uygulamalara katkı sağlamaktır. Nekrotik genç daimi dişlerin kök gelişiminin sağlanması için farklı materyaller kullanılarak uygulanan apeksifikasyon tedavisinden uzun yıllardır yararlanılmaktadır. Bu yöntemin bazı dezavantajları nedeniyle rejeneratif tedavi yöntemleri gündeme gelmeye başlamıştır. Rejeneratif prosedürlerin temelini oluşturan doku mühendisliği, fonksiyonunu kaybetmiş doku ya da organların yeniden restorasyonuna odaklanmakta olup bu konuda yapılan çalışmalar diş hekimliğinin birçok alanında ümit verici sonuçlar elde edildiğini göstermektedir. İlerleyen teknoloji, yüksek hızlı el aletlerinin geliştirilmesinden biyolojik onarım materyallerine kadar diş hekimliği uygulamaları üzerinde önemli, süregelen bir etkiye sahiptir. Doku mühendisliği uygulamalarının günümüzde kullanılan diş tedavilerine alternatif olabilmesi açısından, hekimlerin bu uygulamalar hakkında detaylı bilgilere sahip olmaları ve araştırmalar yaparak uzun dönem sonuçlarını sunmaları önem arz etmektedir

Traditional And Current Treatment Methods From Apexification To Apexogenesis

Aims of the review are to discuss the conventional treatment methods routinely used in pediatric dentistry and the regenerative methods that are being started to be frequently used today for the development of immature, young permanent teeth that have lost their vitality for any reason, and to present relevant studies, and so, to contribute to the future clinical practices. For root development of necrotic young permanent teeth, apexification therapy with different materials has been used for many years. Due to some disadvantages of this method, regenerative treatment methods have begun to become a current issue. Tissue engineering, which forms the basis of regenerative procedures, focuses on the restoration of tissues or organs that have lost their function, and performed studies in this subject show promising results in many areas of dentistry. Progressive technology has an important, ongoing effect on dental practices, from the development of high-speed hand tools to the use of biological repair materials. It is important for physicians to have detailed knowledge about these treatments and to present their long-term results by conducting researches in order that tissue engineering practices could be an alternative to currently used dental treatments

___

  • 1. Herman BW. On the reaction of the dental pulp to vital amputation and calxyl capping. Dtsch Zahnarztl Z 1952; 7: 1446-1447.
  • 2. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007; 33: 377- 390.
  • 3. Nakashima M. Tissue engineering in endodontics. Aust Endod J 2005; 31: 111-313.
  • 4. D’Arcangelo C, D’Amario M. Use of MTA for orthograde obturation of nonvital teeth with open apices: report of two cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104: 98- 101.
  • 5. Frank AL. Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc 1966; 72: 87-89.
  • 6. Heithersay GS. Stimulation of root formation in incompletely developed pulpless teeth. Oral Surg Oral Med Oral Pathol 1970; 29: 620-630.
  • 7. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol 1992; 8: 45-55.
  • 8. Shabahang S, Torabinejad M, Boyne P, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J Endod 1999; 25: 1-5.
  • 9. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993; 19: 591- 595.
  • 10. Silujjai J, Linsuwanont P. Treatment outcomes of apexification or revascularization in nonvital ımmature permanent teeth: a retrospective study. J Endod 2017; 43: 238-245.
  • 11. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36: 400-413.
  • 12. Mooney DJ, Rowley JA. Tissue engineering: integrating cells and materials to create functional tissue replacements. In: Park K, ed. Controlled drug delivery. ACS Books, Washington, D.C., 1997, 333- 346.
  • 13. Sırık SZ, Ergin S, Işık G. Diş Hekimliğinde Doku Mühendisliğinin Yeri. İstanbul Üniversitesi Diş Hekimliği Fükeltesi Dergisi 2012; 46: 47-57.
  • 14. Kaigler D, Mooney D. Tissue engineering's impact on dentistry. J Dent Educ 2001; 65: 456-462.
  • 15.Baum BJ, Mooney DJ. The impact of tissue engineering on dentistry. J Am Dent Assoc 2000; 131: 309-318.
  • 16. Tyagi P, Dhindsa MK. Tissue engineering and its implications in dentistry. Indian J Dent Res 2009; 20: 222-226.
  • 17. Sugito T, Kagami H, Hata H. Transplantation of cultured salivary gland cells into an atrophic saivary gland. Cell Transplant 2004; 13: 691-699.
  • 18.Rajan A, Eubanks E, Edwards S, et al. Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy. Stem Cells Transl Med 2014; 3: 1495-1503.
  • 19. Leiden JM. Gene therapy: promise, pitfalls and prognosis. N Engl J Med 1995; 333: 871-872.
  • 20. Annibali S, Cristalli MP, Tonoli F, Polimeni A. Stem cells derived from human exfoliated deciduous teeth: a narrative synthesis of literature. Eur Rev Med Pharmacol Sci 2014; 18: 2863-2881.
  • 21. Ueda M, Nıshıno Y. Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg 2010; 21: 861- 1866.
  • 22. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCS) in-vitro and in-vivo. Proc Natl Acad Sci USA 2000; 97: 13625-13630.
  • 23. Handa K, Saito M, Yamauchi M, et al. Cementum matrix formation in-vivo by cultured dental follicle cells. Bone 2001; 31: 606-611.
  • 24.Jo YY, Lee HJ, Kook SY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 2007; 13: 767- 773.
  • 25. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100: 5807-5812.
  • 26. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8: 191-199.
  • 27. Prescott RS, Alsanea R, Fayad M, et al. In-vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 2008; 34: 421- 426.
  • 28. Sauerbier S, Stricker A, Kuschnierz J, et al. In-vivo comparison of hard tissue regeneration with human mesenchymal stem cells processed with either the FICOLL method or the BMAC method. Tissue Eng Patr C Methods 2010; 16: 215-223.
  • 29.Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH. Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng Part A 2010; 16: 1823-1833.
  • 30. Dissanayaka WL, Zhu X, Zhang C, Jin L. Characterization of dental pulp stem cells isolated from canine premolars. J Endod 2011; 37: 1074- 1080.
  • 31. Srisuwan T, Tilkorn DJ, Al-Benna S, Abberton K, Messer HH, Thompson EW. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dent Traumatol 2013; 29: 84-91.
  • 32. Piva E, Tarle SA, Nör JE, et al. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod 2017; 43: 568-574.
  • 33. Demirel S, Yalvac ME, Tapsin S, et al. Tooth replantation with adipose tissue stem cells and fibrin sealant: microscopic analysis of rat's teeth. SpringerPlus 2016; 5: 656.
  • 34. Lind M. Growth factors: possible new clinical tools. A review. Acta orthopaedica Scandinavica 1996; 67: 407-417.
  • 35. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002; 217: 93-135.
  • 36. Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 1997; 210: 383-396.
  • 37. Yıldırım S, Alaçam A, Sarıtaş ZK, Oygür T. Transforming Growth Factor B1'in pulpa tedavilerinde kullanılabilirliğinin his-topatolojik olarak araştırılması. GÜ Diş Hek Fak Derg 2001; 18: 123-132.
  • 38.Blumenthal NM, Koh-Kunst G, Alves ME, et al. Effect of surgical implantation of recombinant human bone morphogenetic protein-2 in a bioabsorbable collagen sponge or calcium phosphate putty carrier in intrabony periodontal defects in the baboon. J Periodontol 2002; 73: 1494-1506.
  • 39.Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004; 83: 590-595.
  • 40. Laurent P, Camps J, About I. Biodentine (TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45: 439-448.
  • 41.Chang HH, Chang MC, Wu IH, et al. Role of ALK5/Smad2/3 and MEK1/ERK signaling in transforming growth factor beta 1-modulated growth, collagen turnover, and differentiation of stem cells from apical papilla of human tooth. J Endod 2015; 41: 1272-1280.
  • 42.Ray HL Jr, Marcelino J, Braga R, et al. Long-term follow up of revascularization using platelet-rich fibrin. Dent Traumatol 2016; 32: 80-84.
  • 43. Pang NS, Lee SJ, Kim E, et al. Effect of EDTA on attachment and differentiation of dental pulp stem cells. J Endod 2014; 40: 811-817.
  • 44. Akyıldız M, Sonmez IS. Rejeneratif endodontik tedavi: Bir literatür derlemesi. Turkiye Klinikleri J Pediatr Dent-Special Topics 2016; 2: 1-12.
  • 45. Taneja S, Kumari M. Use of triple antibiotic paste in the treatment of large periradicular lesions. J Investig Clin Dent 2012; 3: 72-76.
  • 46. Kottoor J, Velmurugan N. Revascularization for a necrotic immature permanent lateral incisor: a case report and literature review. Int J Paediatr Dent 2013; 23: 310-316.
  • 47. Forghani M, Parisay I, Maghsoudlou A. Apexogenesis and revascularization treatment procedures for two traumatized immature permanent maxillary incisors: a case report. Restor Dent Endod 2013; 38: 178-181.
  • 48. Kuşgöz A, Yahyaoğlu G. Travmaya uğramış nekrotik pulpalı genç daimi yan keser dişte pulpa revaskülarizasyonu: 48 aylık takip. Türkiye Klinikleri J Pediatr Dent-Special Topics 2016; 2: 28-32.
  • 49.Çelik BN, Kaya N, Tatlı EC, et al. Revaskülarizasyon Tedavisi Sonrası Gelişen Komplikasyonlar: İki Olgu Sunumu. Türkiye Klinikleri J Pediatr Dent-Special Topics 2016; 2: 38-44.
  • 50. Yılmaz G, Nur BG, Tanrıver M, Altunsoy M, Ok E. Revaskülarizasyon ve uygulama yöntemleri. EÜ Diş Hek Fak Derg 2016; 37: 88-98.
  • 51. Kindler V. Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions? J Leukoc Biol 2005; 78: 836-844.
  • 52. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005; 31: 711-718.
  • 53.Brazelton TR, Blau HM. Optimizing techniques for tracking transplanted stem cells in-vivo. Stem Cells 2005; 23: 1251-1265.
  • 54. Schmalz G. Use of cell cultures for toxicity testing of dental materials: advantages and limitations. J Dent 1994; 22: 6-11.
  • 55. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in-vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177-182.
  • 56. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5: 29-39.
  • 57. Tabata Y. Nanomaterials of drug delivery systems for tissue regeneration. Methods Mol Biol 2005; 300: 81-100.
  • 58. Taylor MS, Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: In-vitro acute toxicity of accumulated degradation products. J Appl Biomater 1994; 5: 151-174.
  • 59. Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 2005; 16: 1099 -1104.
  • 60. Griffon DJ, Sedighi MR, Sendemir-Urkmez A, Stewart AA, Jamison R. Evaluation of vacuum and dynamic cell seeding of polyglycolic acid and chitosan scaffolds for cartilage engineering. Am J Vet Res 2005; 66: 599-605.
  • 61. Guo T, Zhao J, Chang J, et al. Porous chitosangelatin scaffold containing plasmid DNA encoding transforming growth factor-beta 1 for chondrocytes proliferation. Biomaterials 2006; 27: 1095-1103.
  • 62. Zeng Q, Nguyen S, Zhang H, et al. Release of growth factors into root canal by irrigations in regenerative endodontics. J Endod 2016; 42: 1760- 1766.
  • 63. Kling M, Cvek M, Mejare I. Rate and predictability of pulp revascularization in therapeutically reimplanted permanent incisors. Endod Dent Traumatol 1986; 2: 83-89.
  • 64. Nosrat A, Seifi A, Asgary S. Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: a review and report of two cases with a new biomaterial. J Endod 2011; 37: 562-567.
  • 65. Lee JW, Kım BJ, Kım MN, Mun SK. The Efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: A simultaneous split-face trial. Dermatol Surg 2011; 37: 931-938.
  • 66. Hiremath H, Gada N, Kini Y, Kulkarni S, Yakub SS, Metgud S. Single-step apical barrier placement in immature teeth using mineral trioxide aggregate and management of periapical inflammatory lesion using platelet-rich plasma and hydroxyapatite. J Endod 2008; 34: 1020-1024.
  • 67. Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using plateletrich plasma: a case report. J Endod 2011; 37: 265- 268.
  • 68. Sanchez-Gonzalez DJ, Mendez-Bolaina E, TrejoBahena N. Platelet-rich plasma peptides: key for regeneration. Int J Pept 2012; 2012: 1-10.
  • 69. Zhu W, Zhu X, Huang GT, Cheung GS, Dissanayaka WL, Zhang C. Regeneration of dental pulp tissue in immature teeth with apical periodontitis using platelet-rich plasma and dental pulp cells. Int Endod J 2013; 46: 962-970.
  • 70. Zhang DD, Chen X, Bao ZF, Chen M, Ding ZJ, Zhong M. Histologic comparison between plateletrich plasma and blood clot in regenerative endodontic treatment: an animal study. J Endod 2014; 40: 1388-1393.
  • 71.Rodriguez-Benitez S, Stambolsky C, GutierrezPerez JL, Torres-Lagares D, Segura-Egea JJ. Pulp revascularization of ımmature dog teeth with apical periodontitis using triantibiotic paste and platelet-rich plasma: a radiographic study. J Endod 2015; 41: 1299-1304.
  • 72. Altaii M, Kaidonis X, Koblar S, Cathro P, Richards L. Platelet rich plasma and dentine effect on sheep dental pulp cells regeneration/revitalization ability (in-vitro). Aust Dent J 2017; 62: 39-46.
  • 73. Alagl A, Bedi S, Hassan K, AlHumaid J. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: Clinical and cone-beam computed tomography evaluation. J Int Med Res 2017; 45: 583-593.
  • 74. Dohan DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates from pure platelet-rich plasma (P-PRP) to leucocyte and platelet-rich fibrin (L-PRF). Trends Biotechnol 2009; 27: 158-167.
  • 75.Balcı H, Toker H. Trombositten zengin fibrin: özellikleri ve diş hekimliğinde kullanımı. GÜ Diş Hek Fak Derg 2012; 29: 183-192.
  • 76. Yadav P, Pruthi PJ, Naval RR, Talwar S, Verma M. Novel use of platelet-rich fibrin matrix and MTA as an apical barrier in the management of a failed revascularization case. Dent Traumatol 2015; 31: 328-331.
  • 77. Nagaveni NB, Pathak S, Poornima P, Joshi JS. Revascularization induced maturogenesis of nonvital immature permanent tooth using platelet-richfibrin: a case report. J Clin Pediatr Dent 2016; 40: 26-30.
  • 78. Subash D, Shoba K, Aman S, Bharkavi SK. Revitalization of an immature permanent mandibular molar with a necrotic pulp using platelet-rich fibrin: a case report. J Clin Diagn Res 2016; 10: 21-23.
  • 79. Kim JH, Woo SM, Choi NK, Kim WJ, Kim SM, Jung JY. Effect of Platelet-rich Fibrin on Odontoblastic Differentiation in Human Dental Pulp Cells Exposed to Lipopolysaccharide. J Endod 2017; 43: 433-438.
  • 80. Li J, Zheng C, Zhang X, et al. Developing a convenient large animal model for gene transfer to salivary glands in-vivo. J Gene Med 2004; 6: 55- 63.
  • 81. Zhang Y, Shi B, Li C, et al. The synergetic boneforming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release 2009; 136: 172-178.
  • 82. Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet 2015; 89: 235-262.
  • 83. Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 2004; 136: 151-163.
  • 84.Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 2004; 6: 139-147.