Yoğun Bakım Ünitesinde yatan Covid-19'lu Gebe ve Lohusaların Mortalite Risk Faktörleri

Amaç: Bu çalışmada yoğun bakımda yatan COVID-19 tanılı gebe ve lohusalarda mortalite prediksiyon modeli oluşturarak APACHE II, SAPS II ve SOFA skorları ile karşılaştırılması amaçlanmıştır. Gereç ve Yöntem: Hastanemizin COVID-19 yoğun bakım ünitelerine yatan Covid-19 tanısı doğrulanmış gebe ve lohusaların demografik, laboratuvar, radyolojik ve klinik verileri geriye dönük olarak kaydedildi. Bulgular: Çalışmaya dahil edilen 50 hastadan 13’ü kaybedildi. Yaş ortalaması ölen grupta 35.54±4.24 yıl, yaşayan grupta 30.03±4.91 yıl idi (p=0.002). Lojistik regresyon modeli, yaş, lenfopeni, yüksek CRP ve IL-6 düzeylerinin mortalite ile ilişkili olduğunu ortaya koydu. Modelin mortalite (AUC) için prediktif gücü 0.946±0.045 (p<0,001) idi. ROC eğrisi altında kalan alan (AUC) APACHE II skoru için 0.712±0.085 (p=0.024), SAPS II skoru için 0.481±0.102 (p=0.842) ve SOFA skoru için 0.656±0.089 (p=0.097) idi. Modelimizin özgüllüğü %97.3, duyarlılığı %84.6, prediktif değeri %91.7 ve negative prediktif değeri %94.7 idi. Sonuç: Oluşturduğumuz tahmin modeli klinisyene, yoğun bakım ünitesine kabul edilen COVID-19 tanılı gebe ve lohusalarda yüksek mortalite riski olan vakaların belirlenmesine olanak tanıyacaktır.

A mortality prediction model in pregnant and postpartum women with Covid-19 admitted to the intensive care unit

Objective: In this study, it was aimed to compare with APACHE II, SAPS II and SOFA scores by creating a mortality prediction model in pregnant and postpartum women with a diagnosis of COVID-19 in intensive care (ICU). Materials and Methods: Demographic, laboratory, radiological and clinical data of pregnant and postpartum women with confirmed COVID-19 diagnosis who were admitted to the COVID-19 ICUs of our hospital were recorded retrospectively. Results: Of the 50 patients included in the study, 13 died. The mean age was 35.54±4.24 years in the non-surviving group and 30.03±4.91 years in the surviving group (p=0.002). A logistic regression model revealed age, lymphopenia, elevated CRP and IL-6 levels to be associated with mortality. The predictive power of the model for mortality (AUC) was 0.946±0.045 (p<0.001). The area under an ROC curve (AUC) was 0.712±0.085 for the APACHE II score (p=0.024), 0.481±0.102 (p=0.842) for the SAPS II score and 0.656±0.089 for the SOFA score (p=0.097). Our model had a specificity of 97.3%, a sensitivity of 84.6%, a predictive value of 91.7%, and a negative predictive value of 94.7%. Conclusion: The prediction model we created will allow the clinician to identify cases with a high risk of mortality risk in pregnant and postpartum women with a diagnosis of COVID-19 admitted to the ICU.

___

  • 1. WHO Coronavirus (COVİD-19) Dashboard. (https://www.who.int/);[Accessed 03 April 2022].
  • 2. Poon LC, Yang H, Dumont S, Lee JCS, Copel JA, Danneels L, et al. ISUOG Interim Guidance on coronavirus disease 2019 (COVID-19) during pregnancy and puerperium: information for healthcare professionals - an update. Ultrasound Obstet Gynecol 2020;55(6):848-62.
  • 3. Yanes-Lane M, Winters N, Fregonese F, Bastos M, Perlman-Arrow S, Campbell JR, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS One 2020 3;15(11):e0241536.
  • 4. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 2020; 1;370:m3320.
  • 5. Liu S, Yao N, Qiu Y, He C. Predictive performance of SOFA and qSOFA for in-hospital mortality in severe novel coronavirus disease. Am J Emerg Med. 2020;38(10):2074-80.
  • 6. Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, et al. Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med 2020;48(8):e657-e665.
  • 7. Wilfong EM, Lovly CM, Gillaspie EA, Huang LC, Shyr Y, Casey JD, et al. Severity of illness scores at presentation predict ICU admission and mortality in COVID-19. J Emerg Crit Care Med. 2021;5:7.
  • 8. Stephens JR, Stümpfle R, Patel P, Brett S, Broomhead R, Baharlo B, et al. Analysis of critical care severity of illness scoring systems in patients with coronavirus disease 2019: A retrospective analysis of three U.K. ICUs. Crit Care Med 2021;49(1):e105-e107.
  • 9. Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TW, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 2020;296(2):E72-E78.
  • 10. Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol 2020;55(6):327-31.
  • 11. Godinjak A, Iglica A, Rama A, Tančica I, Jusufović S, Ajanović A, et al. Predictive value of SAPS II and APACHE II scoring systems for patient outcome in a medical intensive care unit. Acta Med Acad 2016;45(2):97-103.
  • 12. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8(5):475-81.
  • 13. Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020;383(23):2255-73.
  • 14. Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis 2020;95:332-39.
  • 15. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46(5):846-48.
  • 16. Shankar-Hari M, Vale CL, Godolphin PJ, Fisher D, Higgins JPT, Spiga F, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: A Meta-analysis. JAMA 2021;326(6):499-18.
  • 17. Mangalmurti N, Hunter CA. Cytokine storms: Understanding COVID-19. Immunity 2020;53(1):19-25.
  • 18. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020;75(7):1564-81.
  • 19. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020;87(4):281-86.
  • 20. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507-513.
  • 21. Taylor EH, Marson EJ, Elhadi M, Macleod KDM, Yu YC, Davids R, et al. Factors associated with mortality in patients with COVID-19 admitted to intensive care: a systematic review and meta-analysis. Anaesthesia 2021;76(9):1224-32.
  • 22. Vega M, Hughes F, Bernstein PS, Goffman D, Sheen JJ, Aubey JJ, et al. From the trenches: inpatient management of coronavirus disease 2019 in pregnancy. Am J Obstet Gynecol MFM 2020;2(3):100154.
  • 23. Yao R, Martin CB, Haase VS, Tse BC, Nishino M, Gheorghe C, et al. Initial clinical characteristics of gravid severe acute respiratory syndrome coronavirus 2-positive patients and the risk of progression to severe coronavirus disease 2019. Am J Obstet Gynecol MFM 2021;3(4):100365.
  • 24. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020;26(10):1636-43.
  • 25. African COVID-19 Critical Care Outcomes Study (ACCCOS) Investigators. Patient care and clinical outcomes for patients with COVID-19 infection admitted to African high-care or intensive care units (ACCCOS): a multicentre, prospective, observational cohort study. Lancet 2021;397(10288):1885-94.
  • 26. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 2021;47(1):60-73.