Gediz Deltası Koruma Alanında Habitat Değişikliğine Bağlı Ekosistem Hizmet Değerindeki Değişiklikler

Kıyı akarsu deltaları, karakteristik olarak verimli tarım arazileri oluşturmalarının yanı sıra değerli sulak alan ekosistemleri oldukları için de çok önemli morfolojik birimlerdir. Delta sulak alan ekosistemleri, sediman tutmaları, biyo-çeşitliliği korumaları, rekreasyonel hizmetler sunmaları, habitat oluşturmaları ve canlılara barınak olmaları nedeniyle insanlar için önemli ekosistem servisleri sağlamaktadırlar. Ancak delta sulak alanları insan faaliyetleri, kıyı alanı değişimi, kentsel faaliyetler ve tarımsal aktivitelerden kaynaklanan kirleticiler nedeniyle en çok etkilenen ekosistemlerdendir. Bu çalışmada Gediz Deltası Koruma Alanında bulunan farklı ekosistemlerin zamansal ve mekansal değişimini tespit etmek; ekosistem servislerinin ekonomik değerinde gerçekleşen değişimi belirlemek amaçlanmıştır. Analizler, Landsat TM 1987, Landsat ETM+ 2003 ve Landsat OLI 2021 multispektral sensör sistemlerinden elde edilen uzaktan algılanan veriler kullanılarak gerçekleştirilmiştir. Öncelikle habitat sınıfları belirlenmiş ve habitat değişimi ortaya konmuş; daha sonra ise fayda transfer yöntemi kullanılarak ekosistem servis değerlerindeki (ESD) zamansal değişim belirlenmiştir. Genel olarak çalışma alanında sığ su yüzeyi ekosistemlerinin alanı artarken, sazlık bataklık ekosistemlerinin alanı azalmıştır. Sazlık bataklık ekosistemlerinin kaybı, 1987 ile 2021 yılları arasında ekosistem hizmetlerinin yıllık toplam değerini de düşürmeye neden olmuştur. Sonuç olarak, ekosistem servis değerindeki düşüş, çalışma alanındaki sulak alanların restorasyonu ve sürdürülebilirliğine ilişkin kararlarda dikkate alınmalıdır.

Changes in Ecosystem Service Value in response to Habitat Change in the Gediz Delta Conservation Area

Coastal river deltas are very important morphological units, as they are valuable wetland ecosystems and characteristically form fertile agricultural lands. Delta wetland habitats support human existence by retaining sediment, preserving biodiversity, offering recreational opportunities, and constructing habitat and shelter, among other vital physical ecosystem services. However, delta wetlands are among the ecosystems that have been most negatively impacted by human activity, changes in coastal areas, and pollutants from urban and agricultural activities. In this study, it is aimed to determine the spatio-temporal changes of different ecosystems in the Gediz Delta Conservation Area and to determine the change in the economic value of ecosystem services. Analyses were performed using multi-spectral remotely sensed data from the Landsat TM 1987, Landsat ETM+ 2003 and Landsat OLI 2021 satellites Following the identification of habitat classes and the revelation of habitat change, the benefit transfer approach was used to calculate the temporal change in ecosystem service values (ESV). In general, reed swamp habitats decreased in area whereas shallow water surface ecosystems increased in the study area. The yearly total value of ecosystem services between 1987 and 2021 has decreased as a result of the disappearance of reed swamp habitats. In conclusion, the decline in ecosystem service values should be taken into account in decisions regarding the restoration and sustainability of wetlands in the study area.

___

  • Alevkayalı, Ç. & Tağıl, Ş. (2018). Ortak malların trajedisi üzerine teoriler: Gediz Deltası'nda arazi kullanımı-arazi örtüsü değişimi, Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 43, 120-142.
  • Aschonitis, V.G., Gaglio, M., Castaldelli, G. & Fano, E.A. (2016). Criticism on elasticity-sensitivity coefficient for assessing the robustness and sensitivity of ecosystem services values, Ecosystem Services, 20, 66–68. doi: https://doi.org/10.1016/j.ecoser.2016.07.004
  • Ball, G.H. & Hall, D.J. (1965). ISODATA, a Novel Method of Data Analysis and Classification , Technical report, Stanford University, Stanford, USA.
  • Bolca, M., Özen, F. & Güneş, A. (2014). Land use changes in Gediz Delta (Turkey) and their negative impacts on wetland habitats, Journal of Coastal Research, 296, 756–764. doi: https://doi.org/10.2112/JCOASTRES-D-12-00011.1
  • Chen, Z.M., Chen, G.Q., Chen, B., Zhou, J.B., Yang, Z.F. & Zhou, Y. (2009). Net ecosystem services value of wetland: Environmental economic account. Commun Nonlinear Sci Numer Simul, 14, 2837–2843, doi: https://doi.org/10.1016/j.cnsns.2008.01.021
  • Cherry, J. A. (2011). Ecology of wetland ecosystems: water, substrate, and life. Nature Education Knowledge, 3(10):16
  • Coppin, P. R. & Bauer, M. E. (1996). Digital change detection in forest ecosystems with remote sensing imagery, Remote Sensing Reviews, 13(3-4), 207-234. doi: https://doi.org/10.1080/02757259609532305
  • Costanza, R., d’ Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R., Paruelo, J., Raskin, R., Sutton, P. & den Belt, M. (1997). The value of the world’s ecosystem services and natural capital, Nature, 387(6630), 253–260. doi: https://doi.org/10.1038/387253a0
  • Dang K.B., Windhorst W., Burkhard B. & Müller F. (2019). A Bayesian Belief Network – based approach to link ecosystem functions with rice provisioning ecosystem services. Ecol Indic 100, 30–44, doi: https://doi.org/10.1016/j.ecolind.2018.04.055
  • Doğal Hayatı Koruma Vakfı (2008). Türkiye’deki Ramsar alanları değerlendirme raporu, 7.10.2021 tarihinde https://wwftr.awsassets.panda.org/downloads/wwf_turkiye_ramsar_alanlari _degerlendirme_raporu.pdf adresinden alındı.
  • Eken, G. Bozdoğan, M., İsfendiyaroğlu, S., Kılıç, D. T. & Lise, Y. (2006). Türkiye’nin önemli doğa alanları. Doğa Derneği. https://www.dogadernegi.org/onemli-doga-alanlari/
  • Ernoul, L., Sandoz, A. & Fellague, A. (2012). The evolution of two great Mediterranean deltas: Remote sensing to visualize the evolution of habitats and land use in the Gediz and Rhone deltas. Ocean & Coastal Management, 69, 111–117. doi: https://doi.org/10.1016/j.ocecoaman.2012.07.026
  • Gillespie, T. W., Willis, K. S. & Ostermann-Kelm, S. (2014). Spaceborne remote sensing of the world’s protected areas, Progress in Physical Geography, 39(3), 1-17. doi: https://doi.org/10.1177/0309133314561648
  • Giosan, L., Syvitski, J., Is, S.C. & Day, J. (2014). Protect the World’s deltas. Nature, 516, 31–33.
  • Hakyemez, H. Y., Göktaş, F. & Erkal, T. (2013). Gediz grabeninin Kuvaterner jeolojisi ve evrimi, Türkiye Jeoloji Bülteni, 56(2), 1-26.
  • Kachhwaha, T. S. (1983). Spectral signatures obtained from Landsat digital data for forest vegetation and landuse mapping in India. Photogrammetric Engineering and Remote Sensing, 49(5), 685-689.
  • Kaplan, A., Ölgen, M. K., Hepcan, Ş., Türkyılmaz, B., Gencer Güler, G., Sıkı, M., Küçükerbaş, E. V., Akgün, A., Kurucu, Y. & Öner, E. (2005). Kıyı sulak alan sistemi bağlamında Gediz Deltası’nın işlevleri ve üzerindeki baskılar yönüyle değerlendirilmesi, Ege Coğrafya Dergisi, 14(1-2), 1-16.
  • Kayan, İ. & Öner, E. (2015). Sedimantolojik ve paleontolojik verilerle Gediz delta ovasında (İzmir) alüvyal jeomorfoloji araştırmaları, Ege Coğrafya Dergisi, 24(2), 1-27.
  • King, D. M., Mazzotta, M. J. & Markowitz, K. J. (200). Dollar-based ecosystem valuation methods, 7.10.2021 tarihinde https://www.ecosystemvaluation.org adresinden alındı.
  • Knipling E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sensing of Environment, 1(3), 155–159. doi: https://doi.org/10.1016/S0034-4257(70)80021-9
  • Kreuter, U. P., Harris, H. G., Matlock, M. D. & Lacey, R. E. (2001). Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics, 39(3), 333-346. doi: https://doi.org/10.1016/S0921-8009(01)00250-6
  • Li, R. Q., Dong, M., Cui, J. Y., Zhang, L. L., Cui, Q. G. & He, W. M. (2007). Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian county, China. Environmental Monitoring and Assessment, 128(1-3), 503–510. doi: https://doi.org/10.1007/s10661-006-9344-0
  • Long, H., Liu, Y., Hou, X, Li, T. & Li, Y. (2014). Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat International, 44, 536-544. https://doi.org/10.1016/j.habitatint.2014.10.011
  • Mars, J. C. & Houseknecht, D. W. (2007). Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska, Geology, 35(7), 583-586. doi: https://doi.org/10.1130/G23672A.1
  • Meriç, B. T. & Çağırankaya, S., (2013). Orman ve Su İşleri Bakanlığı Doğa Koruma ve Milli Parklar Genel Müdürlüğü, Sulak alanlar. Kayıhan Ajans, Ankara.
  • Mutluer. M. (1990). Gelişimi, yapısı ve sorunlarıyla Türkiye'de enerji sektörü, Ege Coğrafya Dergisi, 5(1), 184-214.
  • Patwary, M. M., Ashraf, S. & Shuvo, F. K. (2019). An assessment of ecosystem services value of Khulna City, Bangladesh: Implications for urban sustainability. 1st International Conference on Urban and Regional Planning, (318-329). December 2019, Dhaka-Bangladesh.
  • Polcyn, F. C., Brown, W. L. & Sattinger, I. J. (1970). The measurement of water depth by remote sensing techniques, Report 8973-26-F, Infrared and Optics Laboratory, Willow Run Laboratories, The University of Michigan, USA.
  • Rawat, J. S. & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh Block, District Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. doi: https://doi.org/10.1016/j.ejrs.2015.02.002
  • Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpenter, S.R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A.K., Hassan, R., Kasperson, R., Leemans, R., May, R. M., McMichael, T., Pingali, P., Samper, C., Scholes, R., Watson, R. T., Zakri, A. H., Shidong, Z., Ash, N. J., Bennett, E., Kumar, P., Lee, M. J., Raudsepp-Hearne, C., Simons, H., Thonell, J. & Zurek, M. B (2005). Ecosystems and Human Well-Being-Synthesis, Island Press.
  • Ritchie, J. C., Zimba, P. V. & Everitt, J. H. (2003). Remote sensing techniques to assess water quality, Photogrammetric Engineering & Remote Sensing, 69(6), 695-704. doi: https://doi.org/10.14358/PERS.69.6.695
  • Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10, 6, 989-1003. doi: https://doi.org/10.1080/01431168908903939
  • Sun B., Lei Y., Cui L., Li W., Kang X. & Zhang M. (2018). Addressing the modelling precision in evaluating the ecosystem services of coastal wetlands. Sustainability (Switzerland) 10: 8–10. doi: https://doi.org/10.3390/su10041136
  • Syvitski, J.P.M., Kettner, A.J., Overeem, I. & Hutton, E.W.H. (2009). Sinking deltas due to human activities. Nat. Geosci. 2, 681–686, doi:%20https://doi.org/10.1038/ngeo629
  • Tağıl, Ş. (2007). Quantifying the change detection of the Uluabat wetland, Turkey, by use of Landsat images, Ekoloji, 16(64), 9-20.
  • Tallis, H. & Kareiva, P. (2005). Ecosystem services, Current Biology, 15(18), 746–748. doi: https://doi.org/10.1016/j.cub.2005.09.007
  • Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), 284–307. doi: https://doi.org/10.2307/1930070
  • Tırıl, A. (2005). Bir koruma öyküsü - Gediz Deltası, Korunan Doğal Alanlar Sempozyumu Bildiriler Kitabı içinde (s.167-174). 8-10 Eylül, Isparta.
  • Virtanen, O., Constantinidou, E. & Tyystjärvi, E. (2020). Chlorophyll does not reflect green light – how to correct a misconception. Journal of Biological Education. doi: https://doi.org/10.1080/00219266.2020.1858930
  • Wang, X., Liu, Y., Ling, F., Liu, Y. & Fang, F. (2017). Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS International Journal of Geo-Information, 6(3), 68. doi: https://doi.org/10.3390/ijgi6030068
  • Westman, W. E. (1977). How much are nature's services worth?, Science, 197(4307), 960–964. doi: http://dx.doi.org/10.1126/science.197.4307.960
  • Zheng, Y., Zhang, G., Wu, Y., Xu, Y. J. & Dai, C. (2019). Dam Effects on Downstream Riparian Wetlands: The Nenjiang River, Northeast China, Water, 11(10), 2038, 1-17. doi: https://www.mdpi.com/2073-4441/11/10/2038