Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction

Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction

We examine the effect of temperature on the elastic scattering angular distributions of 10B + 120Sn reaction. For this, we use two-parameter fermi density distribution for both 10B and 120Sn nuclei as a function of temperature (T = 0, 1, 2, 3, 4, 5, 6, 7 MeV). We obtain the real potentials by using these density distributions within the double folding model based on the optical model. The imaginary part of the optical potential is considered as Woods-Saxon potential. We calculate the elastic scattering angular distributions for all the investigated cases. To see differences between the theoretical results, we compare our results with the experimental data. Then, we discuss the relationship between different root mean square (rms) radii of the nuclei. Finally, we give volume integrals and cross sections according to various temperature values.

___

  • [1] M. Brack and P. Quentin, Phys. Lett. B 52, 159 (1974).
  • [2] U. Mosel, P. G. Zint and K. H. Passler, Nucl. Phys. A 236 252 (1974).
  • [3] P. Quentin and H. Flocard, Ann. Rev. Nucl. Sci. 28, 523 (1978).
  • [4] G. La Rana, C. Ng, Amand Faessler, L. Rikus, R. Sartor, M. Barranco and X. Vias, Nucl.Phys. A 414, 309-315 (1984).
  • [5] M. Aygun, J. Korean Phys. Soc. 73, 1255-1262 (2018).
  • [6] M. Aygun, J. Korean Phys. Soc. 66, 1816-1821 (2015).
  • [7] L. Guo-Qiang and X. Gong-Ou, Phys. Rev. C 41, 169 (1990).
  • [8] D. Bandyopadhyay, S. K. Samaddar, R. Saha and J. N. De, Nucl. Phys. A 539, 370-380(1992).
  • [9] A. Osman and S. S. Abdel-Aziz, Acta Phys. Hung. 67, 367-379 (1990).
  • [10] L. R. Gasques, A. S. Freitas, L. C. Chamon, J. R. B. Oliveira, N. H. Medina, V. Scarduelli,E. S. Rossi, Jr., M. A. G. Alvarez, V. A. B. Zagatto, J. Lubian, G. P. A. Nobre, I. Padronand B. V. Carlson, Phys. Rev. C 97, 034629 (2018).
  • [11] G. R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford, 1983.
  • [12] R. K. Gupta, D. Singh and W. Greiner, Phys. Rev. C 75, 024603 (2007).
  • [13] S. Shlomo and J. B. Natowitz, Phys. Rev. C 44, 2878 (1991).
  • [14] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
  • [15] J. Cook, Comput. Phys. Commun. 25, 125 (1982).