ZnO-TiO2 Hetero Nano Yapılarının Sentezi ve Güneş Pilleri için Fotoelektrokimyasal Performansı

Bu çalışmada, boya ile duyarlılaştırılmış güneş pili (BDGP) için nanopartiküller (NP), nanoçubuklar (NÇ) ve hiyerarşik dallı nanoçubuklardan (HDNÇ) oluşan ZnO-TiO2 hetero yapı fotoanotları, indiyum kalay oksit (ITO) substratı üzerinde ZnCl2, TiCl4, etanol ve HCl içeren bir çözelti ortamında farklı sıcaklıklarda (100, 150 ve 170 ° C) bir adım hidrotermal yöntem tekniği kullanılarak sentezlendi. ZnO-TiO2 hetero yapı fotoanot ince filmleri karakterize etmek için X-ışını Kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM), Enerji Dağılımlı Spektroskopi (EDS) ve UV-Vis Spektroskopisi kullanıldı. Fotoelektrokimyasal performans sonuçlarından, ZnO-TiO2 ince filmlerden oluşan BDGP’lerinin nanopartiküller (% 1,21), nanoçubuklar (% 2,91), ve hiyerarşik dallı nanoçubuklar (% 6,61) üzerinde güç dönüşüm verimine sahip olduğu görülmektedir. Yüksek güç dönüşüm verimi nedeniyle hiyerarşik dallı nanoçubuklar, BDGP'ler için güneş pili performansında önemli bir gelişme olarak dikkate alınabilir.Anahtar Kelimeler: ZnO-TiO2 hetero yapı fotoanotları, Nanoçubuklar, H.D. nanoçubuklar, BDGP

Synthesis of ZnO-TiO2 Hetero Nanostructures and Photoelectrochemical Performance for Solar Cells

In this study, ZnO-TiO2 heterojunction photoanodes consisting of nanoparticles, nanorods, and hierarchical branched nanorods for dye sensitized solar cell (DSSCs) were synthesized using one step hydrothermal method technique on indium tin oxide (ITO) substrate at different temperatures (100, 150 and 180 oC) in a solution containing ZnCl2, TiCl4, ethanol and HCl. For ZnO-TiO2 heterojunction photoanodes, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and UV–Vis absorption spectroscopy were utilized to characterize the thin films. The photoelectrochemical performance results show that the DSSCs composed of ZnO-TiO2 thin films have the power conversion efficiency on nanoparticles (1.21%), nanorods (2.91%), and hierarchical branched nanorods (6.61%), respectively. Because of the high power conversion efficiency, hierarchical branched nanorods can be taken account of as a considerable development in the solar cell performance for QDSCCs.Keywords: ZnO-TiO2 heterojunction photoanodes, Nanorods, Hierarchical branched nanorods, DSCC

___

  • [1] B. Oregan, M. Gratzel,“ A low-cost, hıgh-effıcıency solar-cell based on dye-sensıtızed colloıdal TiO2 fılms,” Nature, c. 353, ss. 737–740, 1991.
  • [2] S. Zhu, L. Shan, X. Chen, L. He, J. Chen, M. Jiang, X. Xie, Z. Zhou, “Hierarchical ZnO architectures consisting of nanorods and nanosheets prepared via a solution route for photovoltaic enhancement in dye-sensitized solar cells, ” RSC Advances, c. 9, s. 3, ss. 2910-2916, 2013.
  • [3] J. Bao, M. Zimmler, F. Capasso, X. Wang, Z. Ren, “Broadband ZnO single-nanowire light-emitting diode, ” Nano Letters, c. 8, s. 6, ss. 1719-1722, 2006.
  • [4] F. Li, F. Jia, W. Wang, “Studies of the electrochemical reduction processes of Bi3+, HTeO2+ and their mixtures, ” Applied Surface Science, c. 16, s. 255, ss. 7394-7402, 2009.
  • [5] K. Zhao, Z. Pan, X. Zhong, “Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells, ” Journal of Physical Chemistry Letters, c. 3, s. 7, ss. 406-417, 2016.
  • [6] C. Chen, Y. Hsu, S. Cherng, “Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells, ” Journal of Alloys and Compounds, c. 3, s. 509, ss. 872-877, 2011.
  • [7] S. Wang, K. Rao, C. Yang Thomas, H. Wang, “Investigation of nitrogen doped diamond like carbon films as counter electrodes in dye sensitized solar cells, ” Journal of Alloys and Compounds, c. 5, s. 509, ss. 1969-1974, 2011.
  • [8] İ. Şişman, M. Can, B. Ergezen, and M. Biçer, “One-step anion-assisted electrodeposition of ZnO nanofibrous networks as photoanodes for dyesensitized solar cells, ” RSC Advances, c. 5, ss. 73692–73698, 2015.
  • [9] S. Li, X. Z. Zhang, X. J. Jiao and H. Lin, “One-step large-scale synthesis of porous ZnO nanofibers and their application in dye-sensitized solar cells, ” Materıals Letters, c. 19-20, s. 65, ss. 2975-2978, 2011.
  • [10] Z. A. Garmaroudi, M. Abdi-Jalebi, M. R. Mohammadi, and R. H. Friend, “A facile low temperature route to deposit a TiO2 scattering layer for efficient dye-sensitized solar cells, ” RSC Advances, c. 75, s. 6, ss. 70895-70901, 2016.
  • [11] S. Ko, D. Lee, H. Kang, K. Nam, J. Yeo, S. Hong, C. Grigoropoulos, H. Sung, “Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell, ” Nano Letters, c. 2, s. 11, ss. 666-671, 2011.
  • [12] L. E. Greene, M. Law, B. D. Yuhas, P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells, ” Journal of Physical Chemistry C, c. 50, s. 111, ss. 18451-18456, 2007.
  • [13] A. Irannejad, K. Janghorban, O. K. Tan, H. Huang, C. K. Lim, P. Y. Tan, X. Fang, C. S. Chua, S. Maleksaeedi, S. M. H. Hejazi, M. M. Shahjamali, M. Ghaffari, “Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO-TiO2 core-shell nanorod electrodes, ” Electrochimica Acta, s. 58, ss. 19-24, 2011.
  • [14] M. Wang, C. Huang, Y. Cao, Q. Yu, W. Guo, Q. Huang, Y. Liu, Z. Huang, J. Huang, H. Wang, Z. Deng, “The effects of shell characteristics on the current-voltage behaviors of dye-sensitized solar cells based on ZnO/TiO2 core/shell arrays, ” Applied Physics Letters, c. 26, s. 94, ss. 263506-3, 2009.
  • [15] R. Shao, L. Sun, L. Tang, Z. Chen, “Preparation and characterization of magnetic core-shell ZnFe2O4@ZnO nanoparticles and their application for the photodegradation of methylene blue, ” Chemical Engineering Journal, s. 217, ss. 185-191, 2013.
  • [16] H. Eshet, M. Gru ¨nwald, E. Rabani, “The Electronic Structure of CdSe/CdS Core/Shell Seeded Nanorods: Type-I or Quasi-Type-II?, ” Nano Letters, c. 12, s. 13, ss. 5880-5885, 2013.
  • [17] Y. Hao, Y. Cao, B. Sun, Y. Li, Y. Zhang, D. Xu, “A novel semiconductor-sensitized solar cell based on P3HT@CdS@TiO2 core-shell nanotube array, ” Solar Energy Materıals and Solar Cells, s. 101, ss. 107-113, 2012. [18] K. Park, Q. Zhang, B.B. Garcia, G. Cao, “Effect of Annealing Temperature on TiO2-ZnO Core-Shell Aggregate Photoelectrodes of Dye-Sensitized Solar Cells, ” Journal of Physical Chemistry C, c. 11, s. 115, ss. 4927-4934, 2011.
  • [19] M.H. Yeh, L.-Y. Lin, C.-Y. Chou, C.-P. Lee, H.-M. Chuang, R. Vittal, K.-C. Ho, “Preparing core-shell structure of ZnO@TiO2 nanowires through a simple dipping-rinse-hydrolyzation process as the photoanode for dye-sensitized solar cells, ” Nano Energy, c. 5, s. 2, ss. 609-621, 2013.
  • [20] X. Yan, C. Zou, X. Gao, W. Gao, “ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity, ” Journal of Materials Chemistry, c. 1, s. 22, ss. 5629-5640, 2012.
  • [21] Y. Cui, W. Wang, N. Li, R. Ding, K. Hong, “Hetero-seed meditated method to synthesize ZnO/TiO2 multipod nanostructures with ultra-high yield for dye-sensitized solar cells, ” Journal of Alloys and Compounds,s. 805, ss. 868-872, 2019.
  • [22] G. Yue, F. Tan, F. Li, C. Chen, W. Zhang, J. Wu and Q. Li, “Enhanced Performance of Flexible Dye-Sensitized Solar Cell based on Nickel Sulfide/Polyaniline/Titanium Counter Electrode,” Electrochimica Acta, s. 149, ss. 117-125, 2014.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü