Yüzey Yanıt Metodolojisi İle Biberiye Yaparaklarından Rosmarinik Asit Ekstraksiyonunun Optimizasyonu

Rosmarinik asit, karnozol ve karnosik asit, biberiye (Rosmarinus officinalis) 'de bulunan önemli doğal antioksidandır. Rosmarinik asit (RA), Bu bileşiklerin, özellikle de Rosmarinik asitin biyolojik aktivitelerini rapor eden çok sayıda çalışma bulunmaktadır. Rosmarinik asitin in-vitro çalışmalarda anti-HIV-1, antibakteriyel, antioksidan, anti-kanserojen ve anti-alerjik aktiviteler, antiviral özellikler gibi bazı biyolojik faaliyetleri olduğu bildirilmiştir. In vivo çalışmalar da Rosmarinik Asitin antialerjik, antitromboz ve antikanserojenik özellikler sergilediğini göstermiştir. Endüstri pek çok faydalı etkileri nedeniyle doğal gıda koruyucuları, antimikrobiyal ve antioksidanlar ile giderek daha fazla ilgilenmektedir. Bu çalışmada, biyolojik olarak güçlü bir antioksidan olan rosmarinik asit bileşimi, Biberiye yapraklarından ekstrakte edildi. Ultrasonik Destekli Ekstraksiyon ve Yüzey Yanıt Metodolojisi Biberiye yapraklarından antioksidanların ekstraksiyon koşullarını optimize etmek için kullanılmıştır. En yüksek Rosmarinik Asit düzeyi (% 6,77) için öngörülen optimum koşullar % 34,37 etanol, 37,15 dk ekstraksiyon zamanı ve 73,38 °C ekstraksiyon sıcaklığı olarak tespit edilmiştir. Tahmin edilen optimum koşullarda, deneysel değerler tahmin edilen değerlere çok yakındı.

Optimization of Rosmarinic Acid Extraction from Rosemary Leaves by Surface Response Methodology

Rosmarinic acid (RA), carnosol and carnosic acid are important natural antioxidants found in rosemary (Rosmarinus officinalis). There are number of papers that report the biological activities of this compound, especially RA. RA has been reported to have some biological activities in vitro such as antiviral properties including anti-HIV-1, antibacterial, antioxidant, anti-carcinogenic, and anti-allergic activities. In vivo studies have shown that RA exhibit anti-allergic, anti-thrombotic, and anti-carcinogenic properties as well. Industry is increasingly interested in natural food preservatives, antimicrobial, and antioxidants due to their beneficial effects. In this work, bioactive a potent antioxidant-rosmarinic acid (RA) compound was extracted from Rosmarinus officinalis leaves. Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants from Rosemary leaf by using ultrasonic extraction. The predicted optimal conditions for the highest RA level(6.77 %) were found at 34.37 % ethanol, 37.15 min extraction time, and 73.38°C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. 

___

  • Shanlou, Q.; Weihua, L.; Ryoko, T.; Miyako, H.; Keiko, M.; Fumio, T.; Yukio, N.; Masataka, Y. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res. 2005; 39. 995–1003.
  • Sui, X.; Liu, T.; Ma, C.; Yang, L.; Zu, Y.; Zhang, L.; Wang, H. Microwave irradiation to pretreat rosemary (Rosmarinus officinalis L.) for maintaining antioxidant content during storage and to extract essential oil simultaneously. Food Chem. 2012; 131. 1399–1405.
  • Osakabe, N.; Takano, H.; Sanbongi, C.; Yasuda, A.; Yanagisawa, R.; Inoue, K.; Yoshikawa, T. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biol. Factors 2004; 21. 127–131.
  • Furtado, M.A.; de Almeida, L.C.F.; Furtado, R.A.; Cunha, W.R.; Tavares, D.C. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat. Res. Gen. Toxicol. Environ. 2008; 657, 150–154.
  • Huang, S.S.; Zheng, R.L. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett. 2006; 239. 271–280.
  • Kim, D.S.; Kim, H.R.; Woo, E.R.; Hong, S.T.; Chae, H.J.; Chae, S.W. Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem. Pharm. 2005; 70, 1066–1078.
  • Li, G.S.; Jiang, W.L.; Tian, J.W.; Qu, G.W.; Zhu, H.B.; Fu, F.H. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 2010; 17. 282–288.
  • Debersac, P.; Vernevaut, M.F.; Amiot, M.J.; Suschetet, M.; Siess, M.H. Effects of a water-soluble extract of rosemary and its purified component rosmarinic acid on xenobiotic-metabolizing enzymes in rat liver. Food Chem. Toxicol. 2001; 39. 109–117.
  • Fallarini, S.; Miglio, G.; Paoletti, T.; Minassi, A.; Amoruso, A.; Bardelli, C.; Brunelleschi, S.; Lombardi, G. Clovamide and rosmarinic acid induce neuroprotective effects in vitro models of neuronal death. Br. J. Pharm, 2009; 157. 1072–1084.
  • Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of rosmarinic acid on atopic dermatitis. J. Dermatol. 2008; 35. 768–771.
  • Psotova, J.; Svobodova, A.; Kolarova, H.; Walterova, D. Photoprotective properties of Prunella vulgaris and rosmarinic acid on humankeratinocytes. J. Photochem. Photobiol. B Biol, 2006; 84. 167–174.
  • Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol, 2009; 175. 2557–2565.
  • T. Ohlsson, N. Bengtsson, Minimal Processing Technologies in the Food Industry, CRC Press, 2002.
  • J. Pokorny, N. Yanishlieva, M.H. Gordon, Antioxidants in Food: Practical Appli-cations, Taylor & Francis, 2001.
  • Navarrete, M. Herrero, A. Martín, M.J. Cocero, E. Ibá˜nez, Valorization of solidwastes from essential oil industry, Journal of Food Engineering 2011; 104.196–201.
  • N. Balasundram, K. Sundram, S. Samman, Phenolic compounds in plants andagri-industrial by-products: antioxidant activity, occurrence, and potentialuses, Food Chemistry 2006; 99.191–203.
  • Ma, C.; Wang, S.; Yang, L.; Zu, Y. Ionic liquid-based ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from samara of Camptotheca acuminate. Chem. Eng. Process. Process Intensif. 2012; 57–58, 59–64.
  • Wang, S.; Yang, L.; Zu, Y.; Zhao, C.; Sun, X.; Zhang, L.; Zhang, Z. Design and performance evaluation of ionic liquids-microwave based environmental-friendly extraction technique for camptothecin and 10-hydroxycamptothecin from samara of Camptotheca acuminate. Ind. Eng. Chem. Res. 2011; 50. 13620–13627. [19] Arslan Y., Katar D., Kayaçetin F., Subaşı İ. 2008. Afyon Alkoloitleri ve Önemi, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 17, (1-2).
  • Liu, T.; Sui, X.; Zhang, R.; Yang, L.; Zu, Y.; Zhang, L.; Zhang, Y.; Zhang, Z. Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J. Chromatogr. A, 2011; 1218. 8480–8489.
  • Jiao, Y.; Zuo, Y. Ultrasonic extraction and HPLC determination of anthraquinones, aloe-emodine, emodine, rheine, chrysophanol, and physcione, in Radix Polygoni multiflori. Phytochem. Anal, 2009; 20, 272–278.
  • Zuo, Y.; Zhang, L.; Wu, J.; Fritz, J.W.; Medeiros, S.; Rego, C. Ultrasonic extraction and capillary gas chromatography determination of nicotine in pharmaceutical formulations. Anal. Chim. Acta, 2004; 526, 35–39.
  • Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011; 18. 813–835.
  • Rodrigues, S.; Pinto, G.A.S. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J. Food Eng.2007; 80. 869–872.
  • Velickovic DT, Milenovic DM, Ristic MS and Veljkovic VB, Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.). and glutinous (Salvia glutinosa L.) sage. Ultrason Sonochem 2006; 13.150–156.
  • Velickovic DT, Milenovic DM, Ristic MS and Veljkovic VB, Ultrasonic extraction of waste solid residues from the Salvia sp. essential oil hydrodistillation. Biochem Eng J 2008; 13.150–156.
  • Vinatoru M, An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 2001; 8.303–313.
  • Toma M, Vinatoru M, Paniwnyk L and Mason TJ, Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason Sonochem 2001; 8.137–142.
  • Lang Q and Wai CM, Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17.300–312.
  • Juntachote T, Berghofer R, Bauer F and Siebenhandl S, The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary. Int J Food Sci Technol 2006; 41.121–133.
  • Lang Q and Wai CM, Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17.300–312.
  • Lang Q and Wai CM, Supercritical fluid extraction in herbal and natural product studies – A practical review. Talanta 2001; 53.771–782.
  • Spigno G and De Faveri DM, Microwave-assisted extraction of tea phenols: A phenomenological study. J Food Eng 2009; 93.210–217.
  • Pan G, Qiao J, Zhu C and Wang F, Optimization of microwaveassisted extraction technology of flavonoids from solid wastes (hawthorn seed), in Proceedings of an International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, Hunan China;19–20Feb. 2011, ed.by Randall Bilof, IEEE Computer Society Conference Publishing Services (CPS) Los Alamitos, California, USA, pp. 541–544, 2011.
  • Zhu CH, Lu FP, Han ZL and Du LX, Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes tu57-1 using surface methodology. J Ind Microbiol Biotechnol 2007; 34.271–278.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü