Yüksek Fırın Cürufu İkameli Çimentoların Yapısal ve Mekanik Özelliklerinin Araştırılması

Gerek doğal gerekse yapay puzolanik malzemeler çimento ve beton teknolojisinde yoğun olarak kullanılmaktadır. Özellikle yapay puzolanların kullanımının atık değerlemesi, çevre kirliliğinin azaltılması, enerji kaynaklarının korunması, dayanım ve dayanıklılığa katkısı nedeniyle giderek yaygınlaştığı görülmektedir. Bu amaçla yapılan çalışmanın ilk aşamasında Portland çimento ve yüksek fırın cürufunun fiziksel, kimyasal, mineralojik, termal özellikleri ve bağ yapıları gibi yapısal özellikleri belirlenmiştir. İkinci aşamada yüksek fırın cürufu ağırlıkça %0, %5, %10, %15 ve %20 oranlarında Portland çimento yerine ikame edilerek 5 tipte çimento elde edilmiştir. Üçüncü aşamada ise bu çimentolarla üretilen çimento hamur ve harç örnekleri üzerinde su ihtiyacı, genleşmesi, priz süresi ve basınç dayanımı değerleri belirlenmiştir. Sonuç olarak yapılan deneyler neticesinde elde edilen veriler, Portland çimento ve yüksek fırın cürufunun fiziksel, kimyasal, mineralojik özellikleri ile bağ yapılarına göre su ihtiyacında, priz sürelerinde ve basınç dayanımlarında farklılıklar olduğunu göstermiştir. Nihayetinde endüstriyel bir atık olan yüksek fırın cürufunun çimento ve beton teknolojisinde kullanılmasıyla ekonomik ve ekolojik yarar sağlanabileceği düşünülmektedir.

Investigation of Structural and Mechanical Properties of Blast Furnace Slag Substituted Cements

Both natural and artificial pozzolanic materials extensively in cement and concrete technology are used. It is seen that especially the use of artificial pozzolans are becoming widespread due to their contribution to waste valuation, reduction of environmental pollution, protection of energy resources, strength and durability. For this purpose, in the first stage of the study, the structural properties of Portland cement and blast furnace slag such as physical, chemical, mineralogical, thermal properties and bond structures were determined. In the second stage, 5 types of cement were obtained by replacing Portland cement at 0%, 5%, 10%, 15% and 20% by weight of blast furnace slag. In the third stage, water requirement, volume expansion, setting time and compressive strength values were determined on cement paste and mortar samples produced with these cements. As a result, the data obtained as a result of the experiments showed that there are differences in water demand, setting times and compressive strengths according to the physical, chemical, mineralogical properties and bond structures of Portland cement and blast furnace slag. It is thought that economic and ecological benefits can be achieved by using blast furnace slag, which is an industrial waste, in cement and concrete technology.

___

  • [1] A. R. Kushnir, M. J. Heap, L. Griffiths, F. B. Wadsworth, A. Langella, P. Baud and J. E. Utley, “The fire resistance of high-strength concrete containing natural zeolites,” Cement and Concrete Composites, vol. 116, no. 103897, 2021.
  • [2] Y. Koçak ve M. Savaş, “Zeolit İkameli Betonlara Sodyum Klorürün Etkisi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 3, ss. 2094-2106, 2019.
  • [3] H. Gerengi, Y. Koçak, M. Kurtay ve H. Durgun, “Diatomit ve Zeolit İkameli Beton İçerisindeki Donatı Korozyonunun Elektrokimyasal Empedans Spektroskopisi (EIS) Yöntemi ile İncelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 4, s. 2, ss. 661-671, 2016.
  • [4] A. Joshaghani, “The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete,” Construction and Building Materials, vol. 150, pp. 583-590, 2017.
  • [5] A. G. N. D. Darsanasiri, F. Matalkah, S. Ramli, K. Al–Jalode, A. Balachandra and P. Soroushian, “Ternary alkali aluminosilicate cement based on rice husk ash, slag and coal fly ash,” Journal of Building Engineering, vol. 19, pp. 36–41, 2018.
  • [6] K. Fang, D. Wang, J. Zhao and M. Zhang, “Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement,” Construction and Building Materials, vol. 299, no. 124265, 2021.
  • [7] D. Zhang, Y. Ge, S. Dai Pang and P. Liu, “The effect of fly ash content on flexural performance and fiber failure mechanism of lightweight deflection-hardening cementitious composites,” Construction and Building Materials, vol. 302, no. 124349, 2021.
  • [8] M. Khan, M. Cao, A. Hussain and S.H. Chu, “Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites,” Construction and Building Materials, vol. 300, no. 124046, 2021.
  • [9] A. Subaşı and M. Emiroğlu, “Effect of metakaolin substitution on physical, mechanical and hydration process of White Portland cement,” Construction and Building Materials, vol. 95, pp. 257-268, 2015.
  • [10] Z. Zhang, S. Liu, F. Yang, Y. Weng and S. Qian, “Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash,” Journal of Cleaner Production, vol. 317, no. 128379, 2021.
  • [11] A. Erfanimanesh and M.K. Sharbatdar, “Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate,” Journal of Building Engineering, vol. 32, no. 101781, 2020.
  • [12] Y. Li, “Effect of post-fire curing and silica fume on permeability of ultra-high performance concrete,” Construction and Building Materials, vol. 290, no. 123175, 2021.
  • [13] L. Hu, Z. He and S. Zhang, “Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement,” Journal of Cleaner Production, vol. 264, no. 121744, 2020.
  • [14] O. Keleştemur and B. Demirel, “Effect of metakaolin on the corrosion resistance of structural lightweight concrete,” Construction and Building Materials, vol. 81, pp. 172-178, 2015.
  • [15] P.R. de Matos, R. Junckes, E. Graeff and L.R. Prudencio Jr, “Effectiveness of fly ash in reducing the hydration heat release of mass concrete,” Journal of Building Engineering, vol. 28, no. 101063, 2020.
  • [16] C. Karakurt and İ.B. Topçu, “Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete,” Construction and Building Materials, vol. 25, no. 4, pp. 1789-1795, 2011.
  • [17] A. Hasanbeigi, L. Price and E. Lin, “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 6220-6238, 2012.
  • [18] E. Worrell, N. Martin and L. Price, “Potentials for energy efficiency improvement in the US cement industry,” Energy, vol. 25, no. 12, pp.1189-1214, 2000.
  • [19] K. Fang, D. Wang, J. Zhao and M. Zhang “Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement,” Construction and Building Materials, vol. 299, no. 124265, 2021.
  • [20] P. Mohsen Zadeh, S.F. Saghravani and G. Asadollahfardi, “Mechanical and durability properties of concrete containing zeolite mixed with meta kaolin and micro‐nano bubbles of water,” Structural Concrete, vol. 20, no. 2, pp.786-797 2019.
  • [21] M. Najimi, J. Sobhani, B. Ahmadi and M. Shekarchi, “An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan,” Construction and building materials, vol. 35, pp.1023-1033 2012.
  • [22] Ş. Erdoğdu ve Ş. Kurbetci, “Betonun Performansına Sağladıkları Etkinlik Acısından Kimyasal ve Mineral Katkı Maddeleri,” Turkiye Muhendislik Haberleri, c. 426, s. 4, ss. 115-120, 2003.
  • [23] F. F. Uysal ve S. Bahar, “Cüruf Çeşitleri ve Kullanim Alanlari,” Trakya Üniversitesi Mühendislik Bilimleri Dergisi, c. 19, s. 1, ss.37-52, 2018.
  • [24] M. Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar,” TÇMB/AR-GE/Y97.2, Ankara, 1997.
  • [25] H. Yalçın ve M. Gürü, “Çimento ve Beton,” Ankara, Türkiye: Palme Yayıncılık, 2006.
  • [26] K. Abdelli, M. Tahlaiti, R. Belarbi and M. N. Oudjit, “Influence of the pozzolanic reactivity of the Blast Furnace Slag (BFS) and metakaolin on mortars,” Energy Procedia, vol. 139, pp. 224-229, 2017.
  • [27] M. S. Amin, S. M. A. El-Gamal, S. A. Abo-El-Enein, F. I. El-Hosiny and M. Ramadan, “Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica füme,” HBRC journal, vol. 11, no. 3, pp. 321-327, 2015.
  • [28] M. M. López, Y. Pineda and O. Gutiérrez, “Evaluation of durability and mechanical properties of the cement mortar added with slag blast furnace,” Procedia Materials Science, vol. 9, pp. 367-376, 2015.
  • [29] J. Zhu, Q. Zhong, G. Chen and D. Li, “Effect of particlesize of blast furnace slag on properties of portland cement,” Procedia Engineering, vol. 27, pp. 231-236, 2012.
  • [30] M. Emiroğlu, Y. Koçak ve S. Subaşı, “Yüksek Fırın Cürufunun Betonun Fiziksel ve Mekanik Özelliklerine Etkisi,” In 6th International Advanced Technologies Symposium (IATS’11), vol. 1, pp. 113-117, 2011.
  • [31] S. Samad and A. Shah, “Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review,” International journal of Sustainable built environment, vol. 6, no. 2, pp. 663-674, 2017.
  • [32] D. N. Richardson, “Strength and Durability Characteristics of a 70% Ground Granulated Blast Furnace Slag (GGBFS) Concrete Mix,” Organizational Results Research Report, Missouri Department of Transportation (MoDOT), 2006,
  • [33] M. Á. Sanjuán, E. Estévez, C. Argiz and D. del Barrio, “Effect of curing time on granulated blast-furnace slag cement mortars carbonation,” Cement and Concrete Composites, vol. 90, pp. 257-265, 2018.
  • [34] C. E. Ekinci, “Elazığ Ferrokrom Fabrikası Cürufunun Çimentoda Puzolanik Katkı Maddesi Olarak Kullanılabilirliğinin Araştırılması,” Endüstriyel Atıkların İnşaat Sektöründe Kullanılması Sempozyumu, Ankara İMO, pp. 243-253, 1993.
  • [35] A. C. de Oliveira Dieguez, S.L.N. Oliveira, G.S. Araújo and A. G. de Sousa Galdino, “Comparison of Kambara reactor slag with blast furnace slag for Portland cement industry applications,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 2786-2795, 2019.
  • [36] M.M. Sadawy and M.T. Nooman, “Influence of nano-blast furnace slag on microstructure, mechanical and corrosion characteristics of concrete,” Materials Chemistry and Physics, vol. 251, no. 123092, 2020.
  • [37] A. Hosan and F.U.A. Shaikh, “Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3,” Journal of Materials Research and Technology, vol. 10, pp. 1310-1322, 2021.
  • [38] X.Y. Wang and H.S. Lee, “Effect of global warming on the proportional design of low CO2 slag-blended concrete,” Construction and Building Materials, vol. 225, pp. 1140-1151, 2019.
  • [39] Çimento deney metotları - Bölüm 1: Dayanım tayini, Türk Standartlar Enstitüsü, TS EN 196–1, 2016.
  • [40] Çimento deney yöntemleri - Bölüm 3: Priz süreleri ve genleşme tayini, Türk Standartlar Enstitüsü, TS EN 196–3, 2017.
  • [41] Çimento- Bölüm 1: Genel ÇimentolarBileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartlar Enstitüsü, TS EN 197-1, 2012.
  • [42] M., Tokyay ve K. Erdoğdu, “Cüruflar ve cüruflu çimentolar, Araştırmaların Gözden Geçirilmesi ve Durum Değerlendirmesi Raporu,” TÇMB/AR-GE/Y 97.2, ANKARA, 2011.
  • [43] Y. C. Choi and B. Park, “Enhanced autogenous healing of ground granulated blast furnace slag blended cements and mortars,” Journal of Materials Research and Technology, vol. 8, no. 4, pp. 3443-3452, 2019.
  • [44] X. Huang, M. Jiang, X. Zhao and C. Tang, “Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder,” Construction and Building Materials, vol. 127, pp. 137-143, 2016.
  • [45] H. N. Yoon, J. Seo, S. Kim, H. K. Lee and S. Park, “Hydration of calcium sulfoaluminate cement blended with blast-furnace slag,” Construction and Building Materials, vol. 268, no. 121214, 2021.
  • [46] M. Yanık, “Farklı incelikte öğütülmüş obsidyen katkılı çimentoların puzolanik özelliklerinin tayini,” Yüksek lisans tezi, İnşaat Mühendisliği Ana Bilim Dalı, Fen Bilimleri Enstitüsü, Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye, 2019.
  • [47] F. Puertas, A. Fernandez-Jimenez and M.T. Blanco-Varela, “Pore solution ın alkali-activated slag cement pastes. relation to the composition and structure of calcium silicate hydrate,” Cement And Concrete Research, vol. 34, no.1, pp. 139-148, 2004.
  • [48] C. E. M. Gomes and O. P. Ferreira, “Analyses of microstructural properties of va/veova copolymer modified cement pastes,” Polimeros, vol. 15, no. 3, pp. 193–198, 2005.
  • [49] M. J. Varas, M. A. De Buergo and R. Fort, “Natural cement as the precursor of portland cement: Methodology for its identification,” Cement and Concrete Research, vol. 35, no. 11, pp. 2055–2065, 2005.
  • [50] F. I. Adeniyi and M.B. Ogundiran, “Synthesis of geopolymer binders and mortars from Ijero-Ekiti calcined clay, blast furnace slag and river sand,” Earthline Journal of Chemical Sciences, vol. 4, no. 1, pp. 15-34, 2020.
  • [51] A. R. Sakulich, S. Miller and M.W. Barsoum, “Chemical and microstructural characterization of 20-month-old alkali-activated slag cements,” Journal of the American Ceramic Society, vol. 93, pp. 1741–1748, 2010.
  • [52] M.Ç. Karakaya, Kil minerallerinin özellikleri ve tanımlama yöntemleri, Ankara, Türkiye: Bizim Büro Basımevi, 2006.
  • [53] R. Gabrovšek, T. Vuk and V. Kaučič, “Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis,” Acta Chimica Slovenica, vol. 53, pp. 159-165, 2006.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü