Yerçekimi Güdümlü Yağ-su Ayırımı için Yeşil Polikaprolakton/Polihidroksibütirat Nanolifli Membranların Tek Basamaklı Üretimi

Endüstriyel organik çözücü emisyonlarının ve petrol sızıntılarının sık görülmesi ile yüksek verimli yağ-su ayırma malzemelerinin geliştirilmesi büyük önem kazanmıştır. Bu çalışmada, yağ-su ayırma için polikaprolakton/polihidroksibütirat (PCL/PHB) nanolifli matlar paslanmaz çelik elek yüzeyler üzerinde tek basamaklı elektroeğirme yöntemi ile başarılı bir şekilde üretildi. Elde edilen biyobazlı lifli matların yüzey morfolojisi Alan Emisyonlu Taramalı Elektron mikroskopisi (FE-SEM) ile analiz edildi. Ayrıca hazırlanan tüm örneklerinin kimyasal yapılarını açığa çıkarmak ve ıslanma özelliklerini incelemek için Fourier Dönüşümlü Kızılötesi spektroskopisi (FT-IR) ve temas açısı ölçüm cihazı kullanıldı. Hazırlanan yeşil PCL/PHB nanolifli membranların ıslanabilirliği üzerine yapılan çalışmalar, membran yüzeylerinin mükemmel hidrofobik ve süperoleofilik özelliğe sahip olduklarını gösterdi. Ölçülen su temas açısı değerleri biyopolimer katkı oranlarına ve elek boyutuna bağlı olarak değişkenlik gösterdi. Paslanmaz çelik elekler üzerinde elde edilen PCL/PHB biyokompozit nanofiber matların maksimum su temas açısı değeri 144.8° olarak ölçülürken yağ temas açısı değeri ise sıfıra yakın olarak ölçüldü. Çelik elekler üzerinde elde edilen hidrofobik ve süperoleofilik PCL/PHB biyonanolifli membranlar doğrudan yerçekimi güdümlü yağ-su ayrımı için kullanıldı ve ekstra herhangi bir kuvvet veya kimyasal reaktif kullanmaksızın ağ boyutuna ve biyopolimer karışım oranlarına bağlı olarak en yüksek %97.4 'lük yüksek bir ayırma verimliliği değeri gözlendi.

One Step Fabrication of Green Polycaprolactone/Polyhydroxbuthyrate Nanofibrous Membranes for Gravity-driven Oil-water Separation

With the frequent occurrence of industrial organic solvent emissions and oil spills, the development of oil-water separation materials with high efficiency has gained great importance. In this study, polycaprolactone/polyhydroxybutyrate (PCL/PHB) nanofiber mats were successfully fabricated by single-step electrospinning on stainless steel mesh surfaces for oil-water separation. The surface morphology of the obtained biobased fiber mats was analyzed by Field Emission Scanning Electron microscopy (FE-SEM). In addition, Fourier Transform Infrared spectroscopy (FT-IR) and contact angle measurement device were used to reveal the chemical structures and to examine their wetting properties of all prepared samples. Studies on the wettability of the prepared green PCL/PHB nanofibrous membranes have shown that the membrane surfaces have excellent hydrophobic and super-oleophilic properties. The measured water contact angle values varied depending on the biopolymer adding ratios and the mesh size. While the maximum water contact angle value of PCL/PHB biocomposite nanofiber mats obtained on stainless steel meshes was measured as 144.8°, the oil contact angle value was measured close to zero. Hydrophobic and superoleophilic PCL/PHB bionanofiber membranes obtained on stainless steel meshes were used directly for gravity driven oil-water separation and a high separation efficiency value of 97.4% was observed, depending on the mesh size and biopolymer adding ratios, without using any extra force or chemical reagents.

___

  • [1] I. B. Ivshina et al., "Oil spill problems and sustainable response strategies through new technologies," Environmental Science: Processes & Impacts, vol. 17, no. 7, pp. 1201-1219, 2015.
  • [2] F. Li, Z. Wang, S. Huang, Y. Pan, and X. Zhao, "Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil–water separation," Advanced Functional Materials, vol. 28, no. 20, p. 1706867, 2018.
  • [3] R. H. Kollarigowda, S. Abraham, and C. D. Montemagno, "Antifouling cellulose hybrid biomembrane for effective oil/water separation," ACS applied materials & interfaces, vol. 9, no. 35, pp. 29812-29819, 2017.
  • [4] W. Kang et al., "A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel," Journal of Hazardous Materials, vol. 392, p. 122499, 2020.
  • [5] A. Cambiella, J. Benito, C. Pazos, and J. Coca, "Centrifugal separation efficiency in the treatment of waste emulsified oils," Chemical Engineering Research and Design, vol. 84, no. 1, pp. 69-76, 2006.
  • [6] J. Song et al., "Barrel‐shaped oil skimmer designed for collection of oil from spills," Advanced materials interfaces, vol. 2, no. 15, p. 1500350, 2015.
  • [7] A. R. Siddiqui, R. Maurya, and K. Balani, "Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation," Journal of Materials Chemistry A, vol. 5, no. 6, pp. 2936-2946, 2017.
  • [8] C. Rattanapan, A. Sawain, T. Suksaroj, and C. Suksaroj, "Enhanced efficiency of dissolved air flotation for biodiesel wastewater treatment by acidification and coagulation processes," Desalination, vol. 280, no. 1-3, pp. 370-377, 2011.
  • [9] Y. Liu and C.-H. Choi, "Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves," Colloid and Polymer Science, vol. 291, no. 2, pp. 437-445, 2013.
  • [10] Y. Sun and Z. Guo, "Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature," Nanoscale Horizons, vol. 4, no. 1, pp. 52-76, 2019.
  • [11] S. M. S. Shahabadi and J. A. Brant, "Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water," Separation and Purification Technology, vol. 210, pp. 587-599, 2019.
  • [12] J. Liu et al., "Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation," Surface and coatings technology, vol. 307, pp. 171-176, 2016.
  • [13] G. J. Dunderdale, M. W. England, T. Sato, C. Urata, and A. Hozumi, "Programmable oil/water separation meshes: water or oil selectivity using contact angle hysteresis," Macromolecular Materials and Engineering, vol. 301, no. 9, pp. 1032-1036, 2016.
  • [14] R. Zhao et al., "Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings," International journal of biological macromolecules, vol. 68, pp. 92-97, 2014.
  • [15] L. Feng et al., "Super‐hydrophobic surfaces: from natural to artificial," Advanced materials, vol. 14, no. 24, pp. 1857-1860, 2002.
  • [16] A. M. Karim, J. P. Rothstein, and H. P. Kavehpour, "Experimental study of dynamic contact angles on rough hydrophobic surfaces," Journal of colloid and interface science, vol. 513, pp. 658-665, 2018.
  • [17] C. Jiang et al., "Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textiles for oil–water separation via thiol-ene click reaction," Journal of Materials Science, vol. 54, no. 9, pp. 7369-7382, 2019.
  • [18] H. Kang, Y. Sun, Y. Li, W. Qin, and X. Wu, "Mechanically robust fish-scale microstructured TiO2-coated stainless steel mesh by atomic layer deposition for oil–water separation," Industrial & Engineering Chemistry Research, vol. 59, no. 48, pp. 21088-21096, 2020.
  • [19] S. Han, Q. Song, X. Feng, J. Wang, X. Zhang, and Y. Zhang, "Flame-Retardant Silanized Boron Nitride Nanosheet-Infused Superhydrophobic Sponges for Oil/Water Separation," ACS Applied Nano Materials, vol. 4, no. 11, pp. 11809-11819, 2021.
  • [20] F. Z. Pour, H. Karimi, and V. M. Avargani, "Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for Water–Oil separation," Polyhedron, vol. 159, pp. 54-63, 2019.
  • [21] Y. Yang, Y. Li, L. Cao, Y. Wang, L. Li, and W. Li, "Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation," Separation and Purification Technology, vol. 269, p. 118726, 2021.
  • [22] M. Obaid, E. Yang, D.-H. Kang, M.-H. Yoon, and I. S. Kim, "Underwater superoleophobic modified polysulfone electrospun membrane with efficient antifouling for ultrafast gravitational oil-water separation," Separation and Purification Technology, vol. 200, pp. 284-293, 2018.
  • [23] S. M. Moatmed, M. H. Khedr, S. El-Dek, H.-Y. Kim, and A. G. El-Deen, "Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation," Journal of Environmental Chemical Engineering, vol. 7, no. 6, p. 103508, 2019.
  • [24] L. Wang, M. Abedalwafa, F. Wang, and C. Li, "Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review," Rev. Adv. Mater. Sci, vol. 34, pp. 123-140, 2013.
  • [25] A. Heimowska, M. Morawska, and A. Bocho-Janiszewska, "Biodegradation of poly (ε-caprolactone) in natural water environments," Polish Journal of Chemical Technology, vol. 19, no. 1, pp. 120--126, 2017.
  • [26] F. B. Semiromi, A. Nejaei, and M. Shojaee, "Effect of methanol concentration on the morphology and wettability of electrospun nanofibrous membranes based on polycaprolactone for oil-water separation," Fibers and Polymers, vol. 20, no. 12, pp. 2453-2460, 2019.
  • [27] H. N. Doan et al., "Environmentally Friendly Chitosan-Modified Polycaprolactone Nanofiber/Nanonet Membrane for Controllable Oil/Water Separation," ACS Applied Polymer Materials, vol. 3, no. 8, pp. 3891-3901, 2021.
  • [28] C. Reshmi, S. P. Sundaran, A. Juraij, and S. Athiyanathil, "Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation," RSC advances, vol. 7, no. 4, pp. 2092-2102, 2017.
  • [29] M. Lopar, I. V. Špoljarić, A. Atlić, M. Koller, G. Braunegg, and P. Horvat, "Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model," Biochemical engineering journal, vol. 79, pp. 57-70, 2013.
  • [30] F. Bayram Sarıipek, Y. Gündoğdu, and H.Ş. Kılıç, "Fabrication of eco-friendly superhydrophobic and superoleophilic PHB-SiO2 bionanofiber membrane for gravity-driven oil/water separation." J Appl Polym Sci, vol. 140, no. e53437, p. 1-10, 2023.
  • [31] A. Iordanskii et al., "New Fibrillar Composites Based on Biodegradable Poly (3-hydroxybutyrate) and Polylactide Polyesters with High Selective Absorption of Oil from Water Medium," in Doklady Physical Chemistry, 2019, vol. 487, no. 2: Springer, pp. 106-108. [32] J. C. C. Yeo et al., "Highly washable and reusable green nanofibrous sorbent with superoleophilicity, biodegradability, and mechanical robustness," ACS Applied Polymer Materials, vol. 2, no. 11, pp. 4825-4835, 2020.
  • [33] L. Zhong, H. Tao, and X. Gong, "Superhydrophobic Poly (l-lactic acid) Membranes with Fish-Scale Hierarchical Microstructures and Their Potential Application in Oil–Water Separation," Langmuir, vol. 37, no. 22, pp. 6765-6775, 2021.
  • [34] C. Cao and J. Cheng, "Fabrication of superhydrophobic copper stearate@ Fe3O4 coating on stainless steel meshes by dip-coating for oil/water separation," Surface and Coatings Technology, vol. 349, pp. 296-302, 2018.
  • [35] A. Xie et al., "One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation," Surface and Coatings Technology, vol. 361, pp. 19-26, 2019.
  • [36] Q.-Y. Cheng, M.-C. Liu, Y.-D. Li, J. Zhu, A.-K. Du, and J.-B. Zeng, "Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation," Polymer Testing, vol. 66, pp. 41-47, 2018.
  • [37] W. Tang et al., "One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation," Separation and Purification Technology, vol. 236, p. 116293, 2020.
  • [38] F. Bayram, E. S. Mercan, and M. Karaman, "One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation," Colloid and Polymer Science, vol. 299, no. 9, pp. 1469-1477, 2021.
  • [39] G. Zhang, P. Wang, X. Zhang, C. Xiang, and L. Li, "The preparation of PCL/MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method," European Polymer Journal, vol. 116, pp. 386-393, 2019.
  • [40] R. Su, S. Li, W. Wu, C. Song, G. Liu, and Y. Yu, "Recent progress in electrospun nanofibrous membranes for oil/water separation," Separation and Purification Technology, vol. 256, p. 117790, 2021.
  • [41] Y. Nie et al., "One-step modification of electrospun PVDF nanofiber membranes for effective separation of oil–water emulsion," New Journal of Chemistry, vol. 46, no. 10, pp. 4734-4745, 2022.
  • [42] M. Huang et al., "Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes," Journal of Materials Chemistry A, vol. 1, no. 45, pp. 14071-14074, 2013.
  • [43] J.-J. Li, L.-T. Zhu, and Z.-H. Luo, "Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation," Chemical Engineering Journal, vol. 287, pp. 474-481, 2016.
  • [44] Y. Guo, D. Tang, E. Zhao, Z. Yu, H. Lv, and X. Li, "Controlled synthesis of amphiphilic graft copolymer for superhydrophobic electrospun fibres with effective surface fluorine enrichment: the role of electric field and solvent," RSC advances, vol. 5, no. 101, pp. 82789-82799, 2015.
  • [45] M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong, and S. S. Yoon, "Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil," ACS applied materials & interfaces, vol. 5, no. 21, pp. 10597-10604, 2013.
  • [46] L. Wu, L. Li, B. Li, J. Zhang, and A. Wang, "Magnetic, durable, and superhydrophobic polyurethane@ Fe3O4@ SiO2@ fluoropolymer sponges for selective oil absorption and oil/water separation," ACS applied materials & interfaces, vol. 7, no. 8, pp. 4936-4946, 2015.
  • [47] R. Scaffaro et al., "Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water: Porous PCL system obtained by leaching melt mixed PCL/PEG/NaCl composites: Oil uptake performance and bioremediation efficiency," European Polymer Journal, vol. 91, pp. 260-273, 2017.
  • [48] J. Wang and L. Chu, "Biological nitrate removal from water and wastewater by solid-phase denitrification process," Biotechnology advances, vol. 34, no. 6, pp. 1103-1112, 2016.
  • [49] D. Wang, Q. Lu, M. Wei, and E. Guo, "Electrospinning of flux‐enhanced chitosan–poly (lactic acid) nanofiber mats as a versatile platform for oil–water separation," Journal of Applied Polymer Science, vol. 135, no. 6, p. 45830, 2018.
  • [50] P. Brown, O. Atkinson, and J. Badyal, "Ultrafast oleophobic–hydrophilic switching surfaces for antifogging, self-cleaning, and oil–water separation," ACS applied materials & interfaces, vol. 6, no. 10, pp. 7504-7511, 2014.
  • [51] F. Bayram Sarıipek, F. Sevgi, and S. Dursun, " Preparation of poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. " Colloids Surf A Physicochem Eng Asp, vol 653, no.129969, pp. 1-12, 2022.
  • [52] T. Furukawa et al., "Structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry," Macromolecules, vol. 38, no. 15, pp. 6445-6454, 2005.
  • [53] L. Wei, N. M. Stark, and A. G. McDonald, "Interfacial improvements in biocomposites based on poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers," Green Chemistry, vol. 17, no. 10, pp. 4800-4814, 2015.
  • [54] F. Bayram Sarıipek, İ. Özaytekin, and F. Erci, "Effect of ultrasound treatment on bacteriostatic activity of piezoelectric PHB-TiO2 hybrid biodegradable scaffolds prepared by electrospinning technique. " J Appl Polym Sci, vol.140, no. e53437, pp. 1-12, 2023.
  • [55] H. S. Barud et al., "Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes," Carbohydrate Polymers, vol. 83, no. 3, pp. 1279-1284, 2011.
  • [56] D. Garcia-Garcia, J. Lopez-Martinez, R. Balart, E. Strömberg, and R. Moriana, "Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend," European Polymer Journal, vol. 104, pp. 10-18, 2018.
  • [57] V. Nagarajan, A. K. Mohanty, and M. Misra, "Sustainable green composites: Value addition to agricultural residues and perennial grasses," ACS Sustainable Chemistry & Engineering, vol. 1, no. 3, pp. 325-333, 2013.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü