Tuz Stresinin Bitkiler Üzerindeki Etkileri ve Geliştirilen Tolerans Mekanizmaları

Jeolojik, hidrolojik ve antropojenik birçok faktörün neden olduğu tuz stresi, bitkilerin hemen hemen tüm gelişme dönemlerinde olumsuz etkilere sebep olan oldukça karmaşık bir abiyotik strestir. Tuz stresinin neden olduğu ozmotik stres, bitki hücresindeki iyonik dengeyi ve genel homeostazı bozar. Bu abiyotik stres, osmotik strese neden olarak bitkilerin kullanabileceği su miktarını kısıtladığı gibi, iyonik stresi de tetikleyerek bitkilerde iyon miktarının toksik seviyelere ulaşmasına neden olmaktadır. Ayrıca bitkilerde reaktif oksijen türlerinin (ROT) artışını tetikleyen ikincil bir oksidatif stres oluşumuna neden olmaktadır. Genel olarak tuz stresine maruz kalan bitkilerde turgor kaybı, stoma iletkenliği ve fotosentez hızında azalma, besin dengesizliği, biyokütlenin azalması ve büyümenin yavaşlaması yaygın etkiler arasında görülür. Bitkiler bu olumsuz etkilerle baş edebilmek ve tuza tolerans oluşturabilmek için tuz alımı ve iyon taşınmasının kontrolü, ozmolitlerin ve antioksidanların sentezi veya birikimini içeren çeşitli savunma mekanizmaları geliştirmişlerdir. Farklı bitkiler, genotipe, adaptasyon kabiliyetine ve bitkinin diğer özelliklerine bağlı olarak tuzluluğa farklı tepkiler vermektedir. Endüstrileşmenin ve insan faaliyetlerinin hızla arttığı küreselleşen dünyada tuzluluğa dayanıklı transgenik bitkilerin geliştirilmesi verimliliği ve ürün kalitesi daha yüksek bitkiler elde etmek için oldukça önemlidir. Yüksek tuz konsantrasyonlarında yaşamlarını sürdürebilen halofitler ise, istenilen gen kaynağının sağlaması açısından tuza toleranslı glikofit bitkilerin yetiştirildiği çoğu transgenik çalışmada model organizmalar olarak kullanılmaktadır.

Effects of Salt Stress on Plants and Developed Tolerance Mechanisms

Salt stress, caused by many geological, hydrological and anthropogenic factors, is a very complex abiotic stress that causes adverse effects in almost all development stages of plants. Osmotic stress caused by salt stress disrupts the ionic balance and general homeostasis in the plant cell. This abiotic stress not only limits the amount of water that plants can use by causing osmotic stress, but also triggers ionic stress, causing the amount of ions in plants to reach toxic levels. In addition, it causes secondary oxidative stress that triggers the increase of reactive oxygen species (ROS) in plants. In general, loss of turgor, decrease in stomatal conductivity and photosynthesis rate, nutrient imbalance, decrease in biomass and slowdown of growth are seen among the common effects in plants exposed to salt stress. Plants have developed various defense mechanisms, including salt intake and control of ion transport, synthesis or accumulation of osmolytes and antioxidants, in order to cope with these negative effects and to create salt tolerance. Different plants respond differently to salinity, depending on genotype, adaptability, and other plant characteristics. In the globalizing world, where industrialization and human activities are rapidly increasing, the development of salinity-tolerant transgenic plants is very important to obtain plants with higher productivity and product quality. Halophytes, which can survive in high salt concentrations, are used as model organisms in most transgenic studies in which salt-tolerant glycophyte plants are grown in order to provide the desired gene source.

___

  • [1] W. Liang, X. Ma, P. Wan and L. Liu, “Plant salt-tolerance mechanism: A review,” Biochemical and biophysical research communications, vol. 495, no. 1, pp. 286-291, 2018.
  • [2] M. S. Kiremit, M. S. Hacıkamiloğlu, H. Arslan ve O. Kurt, “Farklı sulama suyu tuzluluk seviyelerinin keten (Linum usitatissimum L.)’in çimlenme ve erken fide gelişimi üzerine etkisi,” Anadolu Tarım Bilimleri Dergisi, c. 32, s. 3, ss. 350-357, 2017.
  • [3] Y. Yang and Y. Guo, “Elucidating the molecular mechanisms mediating plant salt‐stress responses,” New Phytologist, vol. 217, no. 2, pp. 523-539, 2018.
  • [4] J. R. Acosta-Motos, M. F. Ortuño, A. Bernal-Vicente, P. Diaz-Vivancos, M. J. Sanchez-Blanco and J. A. Hernandez, “Plant responses to salt stress: adaptive mechanisms,” Agronomy, vol. 7, no. 1, Art. no: 18, 2017.
  • [5] S. V. Isayenkov, “Physiological and molecular aspects of salt stress in plants,” Cytology and Genetics, vol. 46, no. 5, pp. 302-318, 2012.
  • [6] N. S. Muchate, G. C. Nikalje, N. S. Rajurkar, P. Suprasanna and T. D. Nikam, “Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance,” The Botanical Review, vol. 82, no. 4, pp. 371-406, 2016.
  • [7] P. Carillo, M. G. Annunziata, G. Pontecorvo, A. Fuggi and P. Woodrow, “Salinity stress and salt tolerance,” Abiotic stress in plants-mechanisms and adaptations, vol. 1, pp. 21-38, 2011.
  • [8] K. Nahar, M. Hasanuzzaman and M. Fujita, “Roles of osmolytes in plant adaptation to drought and salinity,” in Osmolytes and plants acclimation to changing environment: Emerging omics Technologies, 1st ed., New Delhi, India: Springer Nature India Private Limited, 2016, pp. 37-68.
  • [9] M. Singh, J. Kumar, S. Singh, V. P. Singh and S. M. Prasad, “Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review,” Reviews in Environmental Science and Bio/Technology, vol. 14, no. 3, pp. 407-426, 2015.
  • [10] R. Munns, “Comparative physiology of salt and water stress,” Plant, cell & environment, vol. 25, no. 2, pp. 239-250, 2002.
  • [11] B. Shahzad, S. Fahad, M. Tanveer, S. Saud and I. A. Khan, “Plant responses and tolerance to salt stress,” in Approaches for enhancing abiotic stress tolerance in plants, 1st ed., Florida, USA: CRC Press, 2019, pp. 61-78.
  • [12] S. Hao, Y. Wang, Y. Yan, Y. Liu, J. Wang and S. Chen, “A review on plant responses to salt stress and their mechanisms of salt resistance,” Horticulturae, vol. 7, no. 6, Art. no: 132, 2021.
  • [13] M. Tester and R. Davenport, “Na+ tolerance and Na+ transport in higher plants,” Annals of botany, vol. 91, no. 5, pp. 503-527, 2003.
  • [14] R. Munns, “Genes and salt tolerance: bringing them together,” New phytologist, vol. 167, no. 3, pp. 645-663, 2005.
  • [15] C. M. Geilfus, “Chloride: from nutrient to toxicant,” Plant and Cell Physiology, vol. 59, no. 5, pp. 877-886, 2018.
  • [16] P. Parihar, S. Singh, R. Singh, V. P. Singh and S. M. Prasad, “Effect of salinity stress on plants and its tolerance strategies: a review,” Environmental science and pollution research, vol. 22, no. 6, pp. 4056-4075, 2015.
  • [17] H. Wu, “Plant salt tolerance and Na+ sensing and transport,” The Crop Journal, vol. 6, no. 3, pp. 215-225, 2018.
  • [18] H. J. Park, W. Y. Kim and D. J. Yun, “A new insight of salt stress signaling in plant,” Molecules and cells, vol. 39, no. 6, Art. no: 447, 2016. [19] M. A. Kader and S. Lindberg, “Cytosolic calcium and pH signaling in plants under salinity stress,” Plant signaling & behavior, vol. 5, no. 3, pp. 233-238, 2010.
  • [20] M. R. Hadi and N. Karimi, “THE ROLE OF CALCIUM IN PLANTS'SALT TOLERANCE,” Journal of plant nutrition, vol. 35, no. 13, pp. 2037-2054, 2012.
  • [21] S. Yokoi, R. A. Bressan and P. M. Hasegawa, “Salt stress tolerance of plants,” JIRCAS working report, vol. 23, no. 1, pp. 25-33, 2002.
  • [22] E. A. Ibrahim, “Seed priming to alleviate salinity stress in germinating seeds,” Journal of plant physiology, vol. 192, pp. 38-46, 2016.
  • [23] A. Bybordi and J. Tabatabaei, “Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.),” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 37, no. 2, pp. 71-76, 2009.
  • [24] G. Q. Wu, Q. Jiao and Q. Z. Shui, “Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.),” Plant, Soil and Environment, vol. 61, no. 5, pp. 220-226, 2015.
  • [25] R. Ahmed, M. H. K. Howlader, A. Shila and M. A. Haque, “Effect of salinity on germination and early seedling growth of maize,” Progressive Agriculture, vol. 28, no. 1, pp. 18-25, 2017.
  • [26] A. K. Parida and A. B. Das, “Salt tolerance and salinity effects on plants: a review,” Ecotoxicology and environmental safety, vol. 60, no. 3, pp. 324-349, 2005.
  • [27] R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annu. Rev. Plant Biol., vol. 59, pp. 651-681, 2008.
  • [28] B. Saleh, “Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.),” Soil & environment, vol. 31, no. 2, 2012.
  • [29] A. Hameed, M. Z. Ahmed, T. Hussain, I. Aziz, N. Ahmad, B. Gul, B and B. L. Nielsen, “Effects of Salinity Stress on Chloroplast Structure and Function,” Cells, vol. 10, no. 8, Art. no: 2023, 2021.
  • [30] S. M. Zahedi, M .S. Hosseini, N. Fahadi Hoveizeh, R. Gholami, M. Abdelrahman and L. S. P. Tran, “Exogenous melatonin mitigates salinity‐induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance,” Physiologia plantarum, vol. 173, no. 4, pp. 1682-1694, 2021.
  • [31] K. Asada, “Production and scavenging of reactive oxygen species in chloroplasts and their functions,” Plant physiology, vol. 141, no. 2, pp. 391-396, 2006.
  • [32] F. Bejaoui, J. J. Salas, I. Nouairi, A. Smaoui, C. Abdelly, E. Martínez-Force and N. B. Youssef, “Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress,” Journal of Plant Physiology, vol. 198, pp. 32-38, 2016.
  • [33] H. Miyake, S. Mitsuya and M. S. Rahman, “Ultrastructural effects of salinity stress in higher plants,” in Abiotic stress tolerance in plants, 1st ed., Dordrecht, The Netherlands: Springer Science+Business Media B.V., 2006, pp. 215-226.
  • [34] J. Flexas, J. Bota, J. Galmes, H. Medrano and M. Ribas‐Carbó, “Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress,” Physiologia Plantarum, vol. 127, no. 3, pp. 343-352, 2006.
  • [35] R. Hedrich and S. Shabala, “Stomata in a saline world,” Current opinion in plant biology, vol. 46, pp. 87-95, 2018.
  • [36] M. M. Chaves, J. Flexas and C. Pinheiro, “Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell,” Annals of botany, vol. 103, no. 4, pp. 551-560, 2009.
  • [37] S. Karimi, A. Yadollahi, K. Arzani, A. Imani and M. Aghaalikhani, “Gas-exchange response of almond genotypes to water stress,” Photosynthetica, vol. 53, no. 1, pp. 29-34, 2015.
  • [38] R. Ahmad, S. Hussain, M. A. Anjum, M. F. Khalid, M. Saqib, I. Zakir, A. Hassan, S. Fahad and S. Ahmad, “Oxidative stress and antioxidant defense mechanisms in plants under salt stress,” in Plant abiotic stress tolerance, 1st ed., Cham, Switzerland: Springer Nature Switzerland AG, 2019, pp. 191-205.
  • [39] C. Zhao, H. Zhang, C. Song, J. K. Zhu and S. Shabala, “Mechanisms of plant responses and adaptation to soil salinity,” The innovation, vol. 1, no. 1, Art. no: 100017, 2020.
  • [40] M. S. Hossain and K. J. Dietz, “Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress,” Frontiers in plant science, vol. 7, Art. no: 548, 2016.
  • [41] C. H. Pang and B. S. Wang, “Oxidative stress and salt tolerance in plants,” in Progress in botany, 1st ed., Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2008, pp. 231-245.
  • [42] M. Hasanuzzaman, M. Raihan, R. Hossain, A. A. C. Masud, K. Rahman, F. Nowroz, M. Rahman, K. Nahar and M. Fujita, “Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity,” International Journal of Molecular Sciences, vol. 22, no. 17, Art. no: 9326, 2021.
  • [43] I. M. Møller, P. E. Jensen and A. Hansson, “Oxidative modifications to cellular components in plants,” Annu. Rev. Plant Biol., vol. 58, pp. 459-481, 2007.
  • [44] F. K. Choudhury, R. M. Rivero, E. Blumwald and R. Mittler, “Reactive oxygen species, abiotic stress and stress combination,” The Plant Journal, vol. 90, no. 5, pp. 856-867, 2017.
  • [45] S. S. Gill and N. Tuteja, “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants,” Plant physiology and biochemistry, vol. 48, no. 12, pp. 909-930, 2010.
  • [46] M. A. Ahanger, N. S. Tomar, M. Tittal, S. Argal and R. M. Agarwal, “Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions,” Physiology and Molecular Biology of Plants, vol. 23, no. 4, pp. 731-744, 2017.
  • [47] N. Tuteja, “Mechanisms of high salinity tolerance in plants,” Methods in enzymology, vol. 428, pp. 419-438, 2007.
  • [48] H. Huang, F. Ullah, D. X. Zhou, M. Yi and Y. Zhao, “Mechanisms of ROS regulation of plant development and stress responses,” Frontiers in plant science, vol. 10, Art. no: 800, 2019.
  • [49] S. Bhattacharjee, “ROS and oxidative stress: origin and implication,” in Reactive oxygen species in plant biology, 1st ed., New Delhi, India: Springer Nature India Private Limited, 2019, pp. 1-31.
  • [50] C. Paciolla, A. Paradiso and M. C. De Pinto, “Cellular redox homeostasis as central modulator in plant stress response,” in Redox state as a central regulator of plant-cell stress responses, 1st ed., Cham, Switzerland: Springer International Publishing Switzerland, 2016, pp. 1-23.
  • [51] V. D. Rajput, R. K. Singh, K. K. Verma, L. Sharma, F. R. Quiroz-Figueroa, M. Meena, V. S. Gour, T. Minkina, S. Sushkova and S. Mandzhieva, “Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress,” Biology, vol. 10, no. 4, Art. no: 267, 2021.
  • [52] M. K. Berwal, R. Kumar, K. Prakash, G. K. Rai and K. B. Hebbar, “Antioxidant Defense System in Plants Against Abiotic Stress,” in Abiotic Stress Tolerance Mechanisms in Plants, 1st ed., London, UK: CRC Press, 2021, pp. 175-202.
  • [53] P. Ahmad, A. A. Abdel Latef, A. Hashem, E. F. Abd_Allah, S. Gucel and L. S. P. Tran, “Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea,” Frontiers in plant science, vol. 7, Art. no: 347, 2016.
  • [54] A. Doğru ve S. Canavar, “Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri,” Academic Platform Journal of Engineering and Science, c. 8, s. 1, ss. 155-174, 2020.
  • [55] E. Van Zelm, Y. Zhang and C. Testerink, “Salt tolerance mechanisms of plants,” Annual Review of Plant Biology, vol. 71, pp. 403-433, 2020.
  • [56] M. A. Shahid, A. Sarkhosh, N. Khan, R. M. Balal, S. Ali, L. Rossi, C. Gómez, N. Mattson, W. Nasim and F. Garcia-Sanchez, “Insights into the physiological and biochemical impacts of salt stress on plant growth and development,” Agronomy, vol. 10, no. 7, Art. no: 938, 2020.
  • [57] A. Mishra and B. Tanna, “Halophytes: potential resources for salt stress tolerance genes and promoters,” Frontiers in plant Science, vol. 8, Art. no: 829, 2017.
  • [58] C. Fan, “Genetic mechanisms of salt stress responses in halophytes,” Plant signaling & behavior, vol. 15, no. 1, Art. no: 1704528, 2020.
  • [59] X. Tang, X. Mu, H. Shao, H. Wang and M. Brestic, “Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology,” Critical reviews in biotechnology, vol. 35, no. 4, pp. 425-437, 2015.
  • [60] W. H. Shah, A. Rasool, S. Saleem, N. U. Mushtaq, I. Tahir, K. R. Hakeem and R. U. Rehman, “Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress,” International Journal of Genomics, 2021.
  • [61] B. Gupta and B. Huang, “Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization,” International journal of genomics, 2014.
  • [62] T. Yamaguchi and E. Blumwald, “Developing salt-tolerant crop plants: challenges and opportunities,” Trends in plant science, vol. 10, no. 12, pp. 615-620, 2005.
  • [63] S. Katiyar-Agarwal, P. Verslues and J. K. Zhu, “Mechanisms of salt tolerance in plants,” Plant nutrition for food security, human health and environmental protection, vol. 23, 2005.
  • [64] A. Ali, N. Raddatz, J. M. Pardo and D. J. Yun, “HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species,” Physiologia Plantarum, vol. 171, no. 4, pp. 546-558, 2021.
  • [65] D. M. Almeida, M. M. Oliveira and N. J. Saibo, “Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants,” Genetics and molecular biology, vol. 40, pp. 326-345, 2017.
  • [66] L. Wang, Y. Liu, S. Feng, Z. Wang, J. Zhang, J. Zhang, D. Wang and Y. Gan, “AtHKT1 gene regulating K+ state in whole plant improves salt tolerance in transgenic tobacco plants,” Scientific reports, vol. 8, no. 1, pp. 1-12, 2018.
  • [67] H. Ji, J. M. Pardo, G. Batelli, M. J. Van Oosten, R. A. Bressan and X. Li, “The Salt Overly Sensitive (SOS) pathway: established and emerging roles,” Molecular plant, vol. 6, no. 2, pp. 275-286, 2013.
  • [68] J. L. Zhang and H. Shi, “Physiological and molecular mechanisms of plant salt tolerance,” Photosynthesis research, vol. 115, no. 1, pp. 1-22, 2013.
  • [69] U. Deinlein, A. B. Stephan, T. Horie, W. Luo, G. Xu and J. I. Schroeder, “Plant salt-tolerance mechanisms,” Trends in plant science, vol. 19, no. 6, pp. 371-379, 2014.
  • [70] P. Manishankar, N. Wang, P. Köster, A. A. Alatar and J. Kudla, “Calcium signaling during salt stress and in the regulation of ion homeostasis,” Journal of experimental botany, vol. 69, no. 17, pp. 4215-4226, 2018.
  • [71] I. Amin, S. Rasool, M. A. Mir, W. Wani, K. Z. Masoodi and P. Ahmad, “Ion homeostasis for salinity tolerance in plants: A molecular approach,” Physiologia Plantarum, vol. 171, no. 4, pp. 578-594, 2021.
  • [72] G. T. Huang, S. L. Ma, L. P. Bai, L. Zhang, H. Ma, P. Jia, J. Liu, M. Zhong and Z. F. Guo, “Signal transduction during cold, salt, and drought stresses in plants,” Molecular biology reports, vol. 39, no. 2, pp. 969-987, 2012.
  • [73] L. Sathee, R. K. Sairam, V. Chinnusamy and S. K. Jha, “Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat,” Acta physiologiae plantarum, vol. 37, no. 8, pp. 1-10, 2015.
  • [74] E. Bassil and E. Blumwald, “The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters,” Current opinion in plant biology, vol. 22, pp. 1-6, 2014.
  • [75] I. U. Khan, A. Ali and D. J. Yun, “Arabidopsis NHX transporters: sodium and potassium antiport mythology and sequestration during ionic stress,” Journal of Plant Biology, vol. 61, no. 5, pp. 292-300, 2018.
  • [76] P. M. Hasegawa, “Sodium (Na+) homeostasis and salt tolerance of plants,” Environmental and experimental botany, vol. 92, pp. 19-31, 2013.
  • [77] F. Zulfiqar, N. A. Akram and M. Ashraf, “Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon,” Planta, vol. 251, no. 1, pp. 1-17, 2020.
  • [78] M. Ashraf, “Some important physiological selection criteria for salt tolerance in plants,” Flora-Morphology, Distribution, Functional Ecology of Plants, vol. 199, no. 5, pp. 361-376, 2004.
  • [79] H. Pirasteh-Anosheh, G. Ranjbar, H. Pakniyat and Y. Emam, “Physiological mechanisms of salt stress tolerance in plants: An overview,” in Plant-environment interaction: Responses and approaches to mitigate stress, New Jersey, USA: John Wiley & Sons, 2016, ch. 8, pp. 141-160.
  • [80] S. C. Saxena, H. Kaur, P. Verma, B. P. Petla, V. R. Andugula and M. Majee, “Osmoprotectants: potential for crop improvement under adverse conditions,” in Plant acclimation to environmental stress, 1st ed., New York, USA: Springer Science+Business Media New York, 2013, pp. 197-232.
  • [81] M. Singh, J. Kumar, S. Singh, V. P. Singh and S. M. Prasad, “Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review,” Reviews in Environmental Science and Bio/Technology, vol. 14, no. 3, pp. 407-426, 2015.
  • [82] M. Nadeem, M. Ali, G. Kubra, A. Fareed, H. Hasan, A. Khursheed, A. Gul, R. Amir, N. Fatima and S. U. Khan, “Role of osmoprotectants in salinity tolerance in wheat,” in Climate Change and Food Security with Emphasis on Wheat, 1st ed.: Academic Press, 2020, pp. 93-106.
  • [83] P. A. F. de Freitas, H. H. de Carvalho, J. H. Costa, R. D. S. Miranda, K. D. D. C. Saraiva, F. D. B. de Oliveira, D. G. Coelho, J. T. Prisco and E. Gomes-Filho, “Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism,” Plant cell reports, vol. 38, no. 3, pp. 403-416, 2019.
  • [84] F. Kaleem, G. Shabir, K. Aslam, S. Rasul, H. Manzoor, S. M. Shah and A. R. Khan, “An overview of the genetics of plant response to salt stress: present status and the way forward,” Applied biochemistry and biotechnology, vol. 186, no. 2, pp. 306-334, 2018.
  • [85] X. Lan Thi Hoang, D. Ngoc Hai Nhi, N. Binh Anh Thu, N. Phuong Thao and L. S. Phan Tran, “Transcription factors and their roles in signal transduction in plants under abiotic stresses,” Current genomics, vol. 18, no. 6, pp. 483-497, 2017.
  • [86] G. C Nikalje, T. D Nikam and P. Suprasanna, “Looking at halophytic adaptation to high salinity through genomics landscape,” Current Genomics, vol. 18, no. 6, pp. 542-552, 2017.
  • [87] Y. Yang and Y. Guo, “Unraveling salt stress signaling in plants,” Journal of Integrative Plant Biology, vol. 60, no. 9, pp. 796-804, 2018.
  • [88] M. Seifikalhor, S. Aliniaeifard, A. Shomali, N. Azad, B. Hassani, O. Lastochkina and T. Li, “Calcium signaling and salt tolerance are diversely entwined in plants,” Plant Signaling & Behavior, vol. 14, no. 11, Art. no: 1665455, 2019.
  • [89] S. Zhao, Q. Zhang, M. Liu, H. Zhou, C. Ma and P. Wang, “Regulation of plant responses to salt stress,” International Journal of Molecular Sciences, vol. 22, no. 9, Art. no: 4609, 2021.
  • [90] S. Hussain, S. Hussain, B. Ali, X. Ren, X. Chen, Q. Li, M. Saqib and N. Ahmad, “Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond,” Plant Physiology and Biochemistry, vol. 160, pp. 239-256, 2021.
  • [91] H. C. Nguyen, K. H. Lin, S. L. Ho, C. M. Chiang and C. M. Yang, “Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches,” Physiologia Plantarum, vol. 164, no. 4, pp. 452-466, 2018.
  • [92] M. A. Ahanger, N. A. Akram, M. Ashraf, M. N. Alyemeni, L. Wijaya and P. Ahmad, “Signal transduction and biotechnology in response to environmental stresses,” Biologia Plantarum, vol. 61, no. 3, pp. 401-416, 2017.
  • [93] J. Kumar, S. Singh, M. Singh, P. K. Srivastava, R. K. Mishra, V. P. Singh and S. M. Prasad, “Transcriptional regulation of salinity stress in plants: A short review,” Plant Gene, vol. 11, pp. 160-169, 2017.
  • [94] H. Shinde, A. Dudhate, D. Tsugama, S. K. Gupta, S. Liu and T. Takano, “Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis,” Plant physiology and biochemistry, vol. 135, pp. 546-553, 2019.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Radyal Fanlarda Karma Kanat Yapısının Numerik Olarak İncelenmesi

Halil KARTAL, Burak KURŞUN, Korhan ÖKTEN, Levent UĞUR

Yerçekimi Güdümlü Yağ-su Ayırımı için Yeşil Polikaprolakton/Polihidroksibütirat Nanolifli Membranların Tek Basamaklı Üretimi

Fatma BAYRAM SARIİPEK

Menengiç (Pistacia terebinthus L) Ekstraktının Hepatoselüler Karsinom Hücrelerinde Antioksidatif ve Antikarsinojenik Etkileri

Güllü KAYMAK, Meliha KOLDEMİR GÜNDÜZ, Ertan KANBUR

Farklı Koagülanlar Kullanılarak Sulu Çözeltilerden Reaktif Kırmızı 141 ve Dispers Red 13 Boyalarının Giderimi: Bir Optimizasyon ve Karşılaştırma Çalışması

Ahmed ALBAHNASAWİ

Yanıcı, Patlayıcı Kimyasalların Oluşturacağı Tehlikeli Bölgelerin Hesaplanarak Risklerin Değerlendirilmesi, Amonyak Tankı Örneği

Bülent BÜYÜKKIDAN, Ömer Ahmet USLU, Hüseyin GÜMÜŞ

Polipropilen Lif Türü, İçeriği ve Uzunluğunun Sert Poliüretan Kompozitlerin Mekanik Performansına Etkisi

Bilal DEMİREL, Hale ASLANTAŞ, Fatih AKKURT, Ali YARAŞ, Fugen DAVER

Görüntü Kazıma Yoluyla Oluşturulan Örnek Veri Kümesinin Evrişimsel Sinir Ağı Tabanlı Görüntü Sınıflama Üzerine Etkisinin İncelenmesi

Tolga HAYIT

Gümüş Nanoparçacık İçeren Polimer Hibrit Nanomalzemelerin Sentezi ve Metilen Mavisi İndirgenmesine Nanoparçacık Etkisi

Özlem ALTUNORDU KALAYCI, Hülya ARSLAN

İklim Değişikliği Bağlamında Kültürel Mirasın Sürdürülebilirliği ve Enerji Korunumunun Değerlendirilmesi

Merve DENİZ, Ruşen YAMAÇLI

Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi

Yavuz Selim KORKMAZ, İsmet TIKIZ