Trans-Cinnamik Asit ve Xenorhabdus szentirmaii MetabolitlerininBitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı

Bu çalışmada Xenorhabdus szentirmaii bakteri supernatantı ile Photorhabdus luminescens bakteri metaboliti olantranscinnamik asit(TCA)’in çilek, marul gibi bitkilerde patojen Botrytis cinerea fungusuna karşı etkinliği testedilmiştir. Petri deneylerinde B. cinerea’ya karşı TCA ve X. szentirmaii’nin farklı konsantrasyonlarıuygulanmıştır. Petri deneylerindeki sonuçlara göre (%2)’lik TCA ve sentetik bir fungusit in vivo koşullardakombine edilmiştir. Çalışmanın petri deneylerinde, TCA X. szentirmaii’ye göre daha fazla inhibisyon meydanagetirmiştir. Fungusun gelişimini en fazla inhibe eden X. szentirmaii ise %10’luk konsantrasyonudur. Saksıdeneylerinde, fungusitin farklı konsantrasyonları ile TCA (%2) kombine edilerek marul fidelerine uygulanmıştır.Sonuç olarak TCA en az fungusit kadar B. cinerea’ya etkili bulunmuştur. Buna ek olarak TCA ve sentetik fungusitarasında yalnızca antagonistik bir ilişki gözlenmiştir.

Evaluation of Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites against Botrytis cinerea

In this study we evaluated the inhibitory effect of cell-free supernatant of Xenorhabdus szentirmaii and transcinnamic acid (TCA), a metabolite of the bacteria Photorhabdus luminescens against Botrytis cinerea which is fungal pathogen of strawberry, lettuce etc. Different diluted concentrations of TCA and X. szentirmaii were evaluated against B. cinerea in petri assays. According to data from petri assays, TCA (2%) was combined with a synthetic fungicide in vivo conditions. In the results, TCA exhibited higher inhibition than X. szentirmaii supernatant in petri assays. The highest inhibition in fungal growth was only at 10% diluted concentration of X. szentirmaii. In pot experiments, different diluted concentrations of fungucide and TCA (%2) were combined on lettuce seedlings. As a result TCA is as effective as fungicide against B. cinerea. Furthermore TCA did not cause any phytotoxicity on lettuce. However only antogonistic interaction was observed between TCA and fungicide.

___

  • [1] X. L. Fang, Z. Z. Li, Y. H. Wang, and X. Zhang, “In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea,” Journal of Applied Microbiology, vol. 111, no. 1, pp. 145–154, 2011.
  • [2] K. J. Brent, and D.W. Holloman, “Fungicide resistance: the assessment of risk”, Fungicide Resistance Action Committee Monograph no. 2. 2nd edt., Brussels, Belgium: 2007.
  • [3] P. De Costa, and P. Bezerra, Fungicides: Chemistry, Environmental Impact and Health Effects., Hauppauge NY, USA: Nova Biomedical Science Publishers, 2009.
  • [4] N. E. Boemare and R. J. Akhurst, “The genera Photorhabdus and Xenorhabdus,” The prokaryotes, New York: Springer Science + Business Media Inc., 2006, pp. 451–494.
  • [5] C. T. Griffin, N. E. Boemare and E. E. Lewis, “Biology and behavior,” Nematodes as biocontrol agents, Wallingford, UK: CABI Publishing, 2005, pp. 47–64.
  • [6] L. A. Lacey, and R. Georgis, “Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production”, Journal of Nematology, vol. 44, pp. 218– 225, 2012.
  • [7] H. K. Kaya, “Natural enemies and other antagonists,” Entomopathogenic Nematology, Wallingford, UK: CABI Publishing, 2002, pp. 189–204.
  • [8] B. Gulcu, S. Hazir, H. K. Kaya, “Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes”. Journal of Invertebrate Pathology, vol. 110, pp. 326–333, 2012.
  • [9] D. Uluğ, S. Hazır, H.K. Kaya, E.E. Lewis, “Natural enemies of natural enemies: The potential top‐ down impact of predators on entomopathogenic nematode populations”, Ecological Entomology, vol. 39, no. 4, pp. 462-469, 2014.
  • [10] R. Gaugler, and H.K. Kaya, Entomopathogenic Nematodes in Biological Control, Boca Raton, Florida, US: CRC Press, Inc., 2000, pp. 342-343.
  • [11] P.W. Maxwell, G. Chen, J.M. Webster and G.B. Dunphy, “Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus”, Applied and Environmental Microbiology, vol. 60, pp. 715–721, 1994.
  • [12] H. B. Bode, “Entomopathogenic bacteria as a source of secondary metabolites”, Current Opinion in Chemical Biology, vol. 13, pp. 1–7, 2009.
  • [13] J. Houard, A. Aumelas, T. Noel, S. Pages, A. Givaudan, V. Fitton- Ouhabi, P. Villain-Guillot and M. Gualtieri, “Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26”, Journal of Antibiotics, vol. 66, pp. 617–620, 2013.
  • [14] K. Hu, J. Li, B. Li, J.M. Webster, and G. Chen, “A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae)”, Bioorganic & Medicinal Chemistry, vol. 14, pp. 4677–4681, 2006.
  • [15] C. H. Bock, D. I. Shapiro-Ilan, D. Wedge, and C. H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide”. Journal of Pest Science, vol. 87, pp. 155–162, 2014.
  • [16] J. M. Webster, G. Chen, K. Hu and J. Li, “Bacterial metabolites,” Entomopathogenic nematology, London, UK: CABI International, pp. 99–114, 2002
  • [17] X. Fang, M. Zhang, Q. Tang, Y. Wang, and X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta”, Scientific Reports, vol. 4, pp. 4300, 2014.
  • [18] G. Chen, G.B. Dunphy, J.M. Webster, “Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis”, Biological Control, vol. 4, pp. 157-162, 1994.
  • [19] D. I. Shapiro-Ilan, C.C. Reilly, and M.W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan”. Archives of Phytopathology and Plant Protection, vol. 42, pp. 715–728, 2009.
  • [20] D.I. Shapiro-Ilan, C. H. Bock and M.W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens”, Biological Control, vol. 77, pp. 1–6, 2014.
  • [21] E. San-Blas, Z. Carrillo and Y. Parra, “ Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri,” Archives of Phytopathology and Plant Protection, vol. 45, pp. 1950–1967, 2012.
  • [22] A. Givaudan, S. Baghdiguian, A. Lanois, and A.N. Boemare, “Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus”, Applied and Environmental Microbiology, vol. 61, pp. 1408–1413, 1995.
  • [23] S. Forst, D. Clarke, “Bacteria-nematode symbiosis,” Entomopathogenic Nematology, New York, US: CABI publishing, 2002, pp. 57-77.
  • [24] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, C. Hazır, L.G. Leite, M.W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens”, European Journal of Plant Pathology, vol. 146, pp. 369–381, 2016.
  • [25] IBM SPSS Statistics for Windows Version 22.0, Armonk (NY): IBM Corporation, 2013.
  • [26] W.S. Abbott, “A method of computing the effectiveness of an insecticide”, Journal of Economic Entomology, vol. 18, pp. 265-267, 1925.
  • [27] S. Hazir, D.I. Shapiro-Ilan, C.H. Bock, L.G. Leite, “Trans-cinnamic acid and metabolites synergize the potency of some commercial fungicides”, Journal of Invertebrate Pathology, vol. 145, pp. 1–8, 2017.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü