Trans-Cinnamik Asit ve Xenorhabdus szentirmaii Metabolitlerinin Bitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı

Bu çalışmada Xenorhabdus szentirmaii bakteri supernatantı ile Photorhabdus luminescens bakteri metaboliti olan transcinnamik asit(TCA)’in çilek, marul gibi bitkilerde patojen Botrytis cinerea fungusuna karşı etkinliği test edilmiştir. Petri deneylerinde B. cinerea’ya karşı TCA ve X. szentirmaii’nin farklı konsantrasyonları uygulanmıştır. Petri deneylerindeki sonuçlara göre (%2)’lik TCA ve sentetik bir fungusit in vivo koşullarda kombine edilmiştir. Çalışmanın petri deneylerinde, TCA X. szentirmaii’ye göre daha fazla inhibisyon meydana getirmiştir.  Fungusun gelişimini en fazla inhibe eden X. szentirmaii ise %10’luk konsantrasyonudur. Saksı deneylerinde, fungusitin farklı konsantrasyonları ile TCA (%2) kombine edilerek marul fidelerine uygulanmıştır. Sonuç olarak TCA en az fungusit kadar B. cinerea’ya etkili bulunmuştur. Buna ek olarak  TCA ve sentetik fungusit arasında yalnızca antagonistik bir ilişki gözlenmiştir.

___

  • [1] X. L. Fang, Z. Z. Li, Y. H. Wang, and X. Zhang, “In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea,” Journal of Applied Microbiology, vol. 111, no. 1, pp. 145–154, 2011.
  • [2] K. J. Brent, and D.W. Holloman, “Fungicide resistance: the assessment of risk”, Fungicide Resistance Action Committee Monograph no. 2. 2nd edt., Brussels, Belgium: 2007.
  • [3] P. De Costa, and P. Bezerra, Fungicides: Chemistry, Environmental Impact and Health Effects., Hauppauge NY, USA: Nova Biomedical Science Publishers, 2009. [4] N. E. Boemare and R. J. Akhurst, “The genera Photorhabdus and Xenorhabdus,” The prokaryotes, New York: Springer Science + Business Media Inc., 2006, pp. 451–494.
  • [5] C. T. Griffin, N. E. Boemare and E. E. Lewis, “Biology and behavior,” Nematodes as biocontrol agents, Wallingford, UK: CABI Publishing, 2005, pp. 47–64.
  • [6] L. A. Lacey, and R. Georgis, “Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production”, Journal of Nematology, vol. 44, pp. 218–225, 2012.
  • [7] H. K. Kaya, “Natural enemies and other antagonists,” Entomopathogenic Nematology, Wallingford, UK: CABI Publishing, 2002, pp. 189–204. [8] B. Gulcu, S. Hazir, H. K. Kaya, “Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes”. Journal of Invertebrate Pathology, vol. 110, pp. 326–333, 2012. [9] D. Uluğ, S. Hazır, H.K. Kaya, E.E. Lewis, “Natural enemies of natural enemies: The potential top‐down impact of predators on entomopathogenic nematode populations”, Ecological Entomology, vol. 39, no. 4, pp. 462-469, 2014.
  • [10] R. Gaugler, and H.K. Kaya, Entomopathogenic Nematodes in Biological Control, Boca Raton, Florida, US: CRC Press, Inc., 2000, pp. 342-343.
  • [11] P.W. Maxwell, G. Chen, J.M. Webster and G.B. Dunphy, “Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus”, Applied and Environmental Microbiology, vol. 60, pp. 715–721, 1994.
  • [12] H. B. Bode, “Entomopathogenic bacteria as a source of secondary metabolites”, Current Opinion in Chemical Biology, vol. 13, pp. 1–7, 2009.
  • [13] J. Houard, A. Aumelas, T. Noel, S. Pages, A. Givaudan, V. Fitton- Ouhabi, P. Villain-Guillot and M. Gualtieri, “Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26”, Journal of Antibiotics, vol. 66, pp. 617–620, 2013.
  • [14] K. Hu, J. Li, B. Li, J.M. Webster, and G. Chen, “A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae)”, Bioorganic & Medicinal Chemistry, vol. 14, pp. 4677–4681, 2006.
  • [15] C. H. Bock, D. I. Shapiro-Ilan, D. Wedge, and C. H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide”. Journal of Pest Science, vol. 87, pp. 155–162, 2014.
  • [16] J. M. Webster, G. Chen, K. Hu and J. Li, “Bacterial metabolites,” Entomopathogenic nematology, London, UK: CABI International, pp. 99–114, 2002
  • [17] X. Fang, M. Zhang, Q. Tang, Y. Wang, and X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta”, Scientific Reports, vol. 4, pp. 4300, 2014.
  • [18] G. Chen, G.B. Dunphy, J.M. Webster, “Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis”, Biological Control, vol. 4, pp. 157-162, 1994.
  • [19] D. I. Shapiro-Ilan, C.C. Reilly, and M.W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan”. Archives of Phytopathology and Plant Protection, vol. 42, pp. 715–728, 2009.
  • [20] D.I. Shapiro-Ilan, C. H. Bock and M.W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens”, Biological Control, vol. 77, pp. 1–6, 2014.
  • [21] E. San-Blas, Z. Carrillo and Y. Parra, “ Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri,” Archives of Phytopathology and Plant Protection, vol. 45, pp. 1950–1967, 2012.
  • [22] A. Givaudan, S. Baghdiguian, A. Lanois, and A.N. Boemare, “Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus”, Applied and Environmental Microbiology, vol. 61, pp. 1408–1413, 1995.
  • [23] S. Forst, D. Clarke, “Bacteria-nematode symbiosis,” Entomopathogenic Nematology, New York, US: CABI publishing, 2002, pp. 57-77.
  • [24] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, C. Hazır, L.G. Leite, M.W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens”, European Journal of Plant Pathology, vol. 146, pp. 369–381, 2016.
  • [25] IBM SPSS Statistics for Windows Version 22.0, Armonk (NY): IBM Corporation, 2013.
  • [26] W.S. Abbott, “A method of computing the effectiveness of an insecticide”, Journal of Economic Entomology, vol. 18, pp. 265-267, 1925.
  • [27] S. Hazir, D.I. Shapiro-Ilan, C.H. Bock, L.G. Leite, “Trans-cinnamic acid and metabolites synergize the potency of some commercial fungicides”, Journal of Invertebrate Pathology, vol. 145, pp. 1–8, 2017.