Spektrofotometrik Yöntemlerle Tabletlerde Metimazol Tayini

Bu çalışma doğrudan absorbans ölçüm ve türev spektrofotometrik yöntemlerini kullanarak tabletlerdeki methimazolün spektrofotometrik miktar tayinini açıklamaktadır. Yapılan ön çalışmalarda sıfırıncı derece ve birinci türev spektrofotometri yöntemlerinde doğrusal çalışma aralığı 2,0-24,0 µg/mL olarak bulunmuştur. Sıfırıncı derece spektrofometri yönteminde 260,0 nm, birinci derece türev spektrofotometri yönteminde ise 269,0 nm dalga boylarında ölçümler yapılarak kalibrasyon eğrileri elde edilmiştir. Geri kazanım ve bağıl standart sapma değerleri; doğrudan absorbans ölçüm yöntemi için % 103,3 ve % 2,18 ve birinci derece türev spektrofotometri için % 98,0 ve % 0,64 olarak bulunmuştur. Daha sonra önerilen teknikler tablet preparatlarının analizi için uygulanmıştır. Bu çalışmada metodların uygulanabilirliği, methimazol içeren test örneklerinin validasyon çalışmalarıyla doğrulanmıştır. Analiz sonuçları, ilacın miktar tayini için ilgili metodların uygulanabilir olduğunu göstermektedir. 

Determination of Methimazole in Tablets Using Spectrophotometric Methods

This study describes the spectrophotometric quantification of methimazole in tablets using zero-order absorption spectrophotometry and first derivative spectrophotometry methods. In preliminary experiments, linearity range was found between 2.0-24.0 µg/mL in zero-order spectrophotometry and first-order derivative spectrophotometry. Calibration curves were obtained by measurements of the zero-order absorbances and their first derivative values at 260.0 and 269.0 nm for the zero-order spectrophotometry and first derivative spectrophotometry, respectively. The recovery and relative standard deviations were calculated as 103.3 % and 2.18 % for UV absorption spectrophotometry and 98.0% and 0.64% for first derivative spectrophotometry, respectively. The proposed techniques were used for the analysis of tablets preparations. The methods proposed in this study were verified by analyzing validation test samples containing methimazole. Determination results showed that the applied methods were found to suitable for the quantitation of the related drug. 

___

  • [1] M. Aletrari, P. Kanari, D. Partassides and E. Loizou, "Study of the British Pharmacopeia method on methimazole (thiamazole) content in carbimazole tablets," Journal of Pharmaceutical and Biomedical Analysis, vol. 16, no. 5, pp. 785-792, 1998.
  • [2] H. B. Burch and D. S. Cooper, "Management of Graves disease: a review," JAMA, vol. 314, no. 23, pp. 2544-2554, 2015.
  • [3] P. Abraham, A. Avenell, C. M. Park, W. A. Watson and J. S. Bevan. "A systematic review of drug therapy for Graves’ hyperthyroidism," European Journal of Endocrinology, vol. 153, no. 4, pp. 489-498, 2005.
  • [4] A. Fumarola, A. Di Fiore, M. Dainelli, G. Grani and A. Calvanese. "Medical treatment of hyperthyroidism: state of the art," Experimental and Clinical Endocrinology & Diabetes, vol. 118, no. 10, pp. 678, 2010.
  • [5] C. Donga, C. Y. Zhangb, L. Guoa and Q. Lia, "Spectrophotometric determination of methimazole in pharmaceutical, serum and urine samples by reaction with potassium ferricyanide-Fe (III)," Journal of Analytical Chemistry, vol. 65, no. 7, pp. 707-712, 2010.
  • [6] C. Sanchez-Pedreno, M. I. Albero, M. S. Garcia and V. Rodenas, "Flow-injection spectrophotometric determination of carbimazole and methimazole," Analytica Chimica Acta, vol. 308, no. 1-3, pp. 457-461, 1995.
  • [7] M. Skowron and W. Ciesielski, "Spectrophotometric determination of methimazole, Dpenicillamine, captopril, and disulfiram in pure form and drug formulations," Journal of Analytical Chemistry, vol. 66, no. 8, pp. 714, 2011.
  • [8] M. Aletrari, P. Kanari, D. Partassides and E. Loizou, "Study of the British Pharmacopeia method on methimazole (thiamazole) content in carbimazole tablets," Journal of Pharmaceutical and Biomedical Analysis, 16, no. 5, pp. 785-792, 1998.
  • [9] N. A. M. Germán, F. A. Bertolino, E. Salinas and J. Raba, "Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations," Sensors and Actuators B: Chemical, vol. 133, no. 1 pp. 256-262, 2008.
  • [10] M. Aslanoglu and N. Peker, "Potentiometric and voltammetric determination of methimazole," Journal of Pharmaceutical and Biomedical Analysis, vol. 33, no. 5, pp. 1143-1147, 2003.
  • [11] B.,Yilmaz and F. B. Nisanci, "Electrochemical study of methimazole and its direct determination in pharmaceutical preparations and human serum by square wave and differential pulse voltammetry," Journal of Pharmaceutical Research and Reviews, vol. 1 no. 5, pp. 1-13, 2017.
  • [12] R. Zakrzewski, "Determination of methimazole in pharmaceutical preparations using an HPLC method coupled with an iodine-azide post-column reaction," Journal of Liquid Chromatography & Related Technologies, vol. 32, no. 3, pp. 383-398, 2008.
  • [13] A. Meulemans, C. Manuel, C. Ferriere and M. Valpillat, "Determination of Methimazole in Plasma by High Performance Liquid Chromatography," Journal of Liquid Chromatography, vol. 3, no. 2, pp. 287-298, 1980.
  • [14] K. Kuśmierek and E. Bald, "Determination of methimazole in urine by liquid chromatography," Talanta, vol.71, no. 5, pp. 2121-2125, 2007.
  • [15] M. S. Chernov’yants, E. V. Khokhlov and A. O. Dolinkin, "Electrophoretic determination of 1-methyl-2-mercaptoimidazole in the pharmaceutical preparation mercazolyl," Journal of Analytical Chemistry, vol. 62, no. 3, pp. 263-265, 2007.