Polimerik Linoleik Asit Içeren HEMA Bazlı Amfifilik Yarı IPN Kriyojellerin Hazırlanması, Karakterizasyonu ve Şişme Davranışının Araştırılması

Bu çalışmada, bitkisel yağ bazlı bir polimerik yağ asidi olan polimerik linoleik asit (PLina) ve yaygın olarak tercih edilen 2-hidroksietil metakrilat (HEMA) monomeri ile oluşturulacak yeni bir polimerik kriyojel sisteminin sentezlenmesi ve karakterize edilmesi amaçlanmıştır. Bu amaçla, öncelikle polimerik lineloik asit için sırasıyla otooksidasyon ve hidroksilasyon reaksiyonları gerçekleştirilmiştir. Hidroksillenmiş polimerik lineloik asit ve HEMA monomer, çapraz bağlayıcı olarak MBAA varlığında bir kriyojenik jelleşme reaksiyonuna tabi tutuldu. Elde edilen yeni kriyojeller, FTIR, SEM, BET, TGA analizleri ile karakterize edilmiştir. Sentezlenen PLinaOH-HEMA kriyojellerinin sudaki şişme davranışı kinetik çalışmalarla sonuçlandırılmıştır. Öte yandan, tüm kriyojellerin çözücü alımı için potansiyellerini görmek için araştırmak için bazı polar ve polar olmayan diğer çözücüler kullanıldı.

Preparation, Characterization and İnvestigation of Swelling Behavior of HEMA-Based Amphiphilic Semi-IPN Cryogels Containing Polymeric Linoleic Acid

In this study, it was aimed to synthesize and characterize a new polymeric cryogel system to be formed with polymeric linoleic acid (PLina), a vegetable oil-based polymeric fatty acid, and the widely preferred 2-hydroxyethyl methacrylate (HEMA) monomer. cryogels. For this purpose, firstly, autoxidation and hydroxylation reactions were carried out for polymeric lineloic acid, respectively. Hydroxylated polymeric lineloic acid (PLina-OH) and HEMA monomer were subjected to a cryogenic gelation reaction in the presence of N,N′-methylene bisacrylamide (MBAA) as crosslinking agent. The obtained new cryogel was characterized by FTIR, SEM, BET, TGA analyses. The swelling behavior of the synthesized PLinaOH-HEMA cryogels in water was concluded with kinetic studies. In the other hands, some of polar and non-polar other solvents was used for investigation of all cryogels to see their potentials for solvent uptake.

___

  • [1] L. Z. Rogovina, V. G. Vasil’ev, and E. E. Braudo, “Definition of the concept of polymer gel,” Polym. Sci. - Ser. C, vol. 50, no. 1, pp. 85–92, 2008.
  • [2] J. Jagur-Grodzinski, “Polymeric gels and hydrogels for biomedical and pharmaceutical applications,” Polymers for Advanced Technologies, vol. 21, no. 1. pp. 27–47, 2010.
  • [3] N. Sahiner, “Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis,” Progress in Polymer Science, vol. 38, no. 9. Pergamon, pp. 1329–1356, Sep. 01, 2013.
  • [4] F. Horkay and J. F. Douglas, “Polymer Gels: Basics, Challenges, and Perspectives,” 2018. Accessed: Jun. 22, 2021. [Online]. Available: https://pubs.acs.org/sharingguidelines.
  • [5] J. Kopeček, “Polymer chemistry: Swell gels,” Nature, vol. 417, no. 6887. Nature Publishing Group, pp. 388–391, May 23, 2002.
  • [6] V. I. Lozinsky, “Cryogels on the basis of natural and synthetic polymers: Preparation, properties and application,” Usp. Khim., vol. 71, no. 6, pp. 579–584, 2002.
  • [7] K. Ito, “Novel cross-linking concept of polymer network: Synthesis, structure, and properties of slide-ring gels with freely movable junctions,” Polym. J., vol. 39, no. 6, pp. 489–499, 2007.
  • [8] V. I. Lozinsky and O. Okay, “Basic Principles of Cryotropic Gelation,” Adv. Polym. Sci., vol. 263, pp. 49–101, 2014.
  • [9] F. M. Plleva, I. Y. Galaev, and B. Mattiasson, “Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications,” Journal of Separation Science, vol. 30, no. 11. pp. 1657–1671, 2007.
  • [10] M. Zhai, F. Ma, J. Li, B. Wan, and N. Yu, “Preparation and properties of cryogel based on poly(hydroxypropyl methacrylate),” J. Biomater. Sci. Polym. Ed., vol. 29, no. 12, pp. 1401–1425, 2018.
  • [11] F. Ak, Z. Oztoprak, I. Karakutuk, and O. Okay, “Macroporous Silk Fibroin Cryogels,” Biomacromolecules, vol. 14, no. 3, pp. 719–727, 2013.
  • [12] S. A. Bencherif, R. W. Sands, O. A. Ali, W. A. Ali, S. A. Lewin, T. M. Braschler, T. Shih, C. S. Verbeke, D. Bhatta, G. Dranoff, D. J. Mooney, “Injectable cryogel-based whole-cell cancer vaccines,” Nat. Commun., vol. 6, no. 1, pp. 1–13, 2015.
  • [13] T. Santos, A.Brito, R.Boto, P.Sousa, P.Almeida, C.Cruz and C.Tomaz, “Influenza DNA vaccine purification using pHEMA cryogel support,” Sep.Purif. Technol., vol. 206, pp. 192–198, 2018.
  • [14] T. D. Luong, M. Zoughaib, R. Garifullin, S. Kuznetsova, M. O. Guler, and T. I. Abdullin, “In Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β Cyclodextrin-Adamantane Complexation for Studying Cell-Instructive Peptide Environment,” ACS Appl. Bio Mater., vol. 3, no. 2, pp. 1116–1128, 2020.
  • [15] A. Cecilia, A. Baecker, E. Hamann, A. Rack, T. van de Kamp, F.J. Gruhl, R.Hofmann, J.Moosmann, S. Hahn, J. Kashef, S. Bauer, T. Farago, L. Helfen, and T. Baumbach,, “Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing,” Mater. Sci. Eng. C, vol. 71, pp. 465–472, 2017.
  • [16] T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, and P. Thavarungkul, “Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor,” Sensors Actuators, B Chem., vol. 246, pp. 854–863, 2017.
  • [17] Z. Haider, A. Haleem, R. u S. Ahmad, U. Farooq, L. Shi, U. P. Clever, K. Memon, A. Fareed, I. Khan, M. K. Mbogba, S. M. Chapal Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. He, J. Luo, and G. Zhao, “Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators,” Nano Energy, vol. 68, p. 104294, 2020.
  • [18] M. D. Stanescu, S. Gavrilas, R. Ludwig, D. Haltrich, and V. I. Lozinsky, “Preparation of immobilized Trametes pubescens laccase on a cryogel-type polymeric carrier and application of the biocatalyst to apple juice phenolic compounds oxidation,” Eur. Food Res. Technol., vol. 234, no. 4, pp. 655–662, 2012.
  • [19] M. Çadırcı, K. Şarkaya, and A. Allı, “Dielectric properties of CdSe quantum dots-loaded cryogel for potential future electronic applications,” Mater. Sci. Semicond. Process., vol. 119, p. 105269, 2020.
  • [20] T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular nanotube architectures based on amphiphilic molecules,” Chemical Reviews, vol. 105, no. 4. American Chemical Society , pp. 1401–1443, 2005.
  • [21] C. XiaoMing, D. Wei, and Z. XianRen, “SCIENCE CHINA Chemistry Self-assembly of amphiphilic molecules: A review on the recent computer simulation results,” vol. 53, no. 9, pp. 1853 1861, 2010. [22] G. Galli and E. Martinelli, “Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling,” Macromol. Rapid Commun., vol. 38, no. 8, p. 1600704, 2017.
  • [23] C. S. Patrickios and T. K. Georgiou, “Covalent amphiphilic polymer networks,” Current Opinion in Colloid and Interface Science, vol. 8, no. 1. Elsevier BV, pp. 76–85, Mar. 01, 2003.
  • [24] S. Zarzhitsky, H. Edri, Z. Azoulay, I. Cohen, Y. Ventura, A. Gitelman, and H. Rapaport, “The effect of pH and calcium ions on the stability of amphiphilic and anionic β-sheet peptide hydrogels,” Biopolymers, vol. 100, no. 6, pp. 760–772, 2013.
  • [25] X. R. Zhou, R. Ge, and S. Z. Luo, “Self-assembly of pH and calcium dual-responsive peptide amphiphilic hydrogel,” J. Pept. Sci., vol. 19, no. 12, pp. 737–744, 2013.
  • [26] W. Ha, J. Yu, X. Y. Song, J. Chen, and Y. P. Shi, “Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system,” ACS Appl. Mater. Interfaces, vol. 6, no. 13, pp. 10623–10630, 2014.
  • [27] M. H. Hsiao, M.Larsson, A. Larsson, H. Evenbratt, Y. Y. Chen, Y. Y. Chen, and D. M. Liu, “Design and characterization of a novel amphiphilic chitosan nanocapsule based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide,” J. Control. Release, vol. 161, no. 3, pp. 942–948, 2012.
  • [28] W. C. Huang, S. Y. Chen, and D. M. Liu, “An amphiphilic silicone-modified polysaccharide molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling,” Soft Matter, vol. 8, no. 42, pp. 10868–10876, 2012.
  • [29] S. Song, L. Feng, A. Song, and J. Hao, “Room-temperature super hydrogel as dye adsorption agent,” J. Phys. Chem. B, vol. 116, no. 42, pp. 12850–12856, 2012.
  • [30] S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Insight on Castor Oil Based Polyurethane and Nanocomposites: Recent Trends and Development,” Polymer - Plastics Technology and Engineering, vol. 56, no. 14. Taylor and Francis Inc., pp. 1556–1585, Sep. 22, 2017. [31] P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev., vol. 39, no. 1, pp. 301–312, 2010.
  • [32] M. A. Sawpan, “Polyurethanes from vegetable oils and applications: a review,” J. Polym. Res. 2018 258, vol. 25, no. 8, pp. 1–15, 2018.
  • [33] H.-M. Kim, H.-R. Kim, C. T. Hou, Beom, and S. Kim, “Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxy Fatty Acids,” doi: 10.1007/s11746-010 1634-6.
  • [34] R. L. Shogren, Z. Petrovic, Z. Liu, and S. Z. Erhan, “Biodegradation behavior of some vegetable oil-based polymers,” J. Polym. Environ., vol. 12, no. 3, pp. 173–178, 2004.
  • [35] B. Hazer, “Chemical Modification of Synthetic and Biosynthetic Polyesters,” in Biopolymers Online, Wiley, 2002.
  • [36] P. S. Sathiskumar and G. Madras, “Synthesis, characterization, degradation of biodegradable castor oil based polyesters,” Polym. Degrad. Stab., vol. 96, no. 9, pp. 1695–1704, 2011.
  • [37] S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomaterialia, vol. 10, no. 4. Elsevier BV, pp. 1692–1704, Apr. 01, 2014.
  • [38] G. Acik, M. Kamaci, C. Altinkok, H. R. F. Karabulut, and M. A. Tasdelen, “Synthesis and properties of soybean oil-based biodegradable polyurethane films,” Prog. Org. Coatings, vol. 123, pp. 261–266, 2018.
  • [39] B. Das, U. Konwar, M. Mandal, and N. Karak, “Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material,” Ind. Crops Prod., vol. 44, pp. 396–404, 2013.
  • [40] B. Çakmakli, B. Hazer, T. Erdoğan, and A. G. Mutlu, “DNA adsorption and dynamic mechanical analysis of polymeric oil/oil acid copolymers,” J. Polym. Res., vol. 20, no. 3, pp. 1–11, 2013.
  • [41] A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g poly(LINOLEIC ACID)/poly(linolenic acid) graft copolymers,” JAOCS, J. Am. Oil Chem. Soc., vol. 88, no. 2, pp. 255–263, 2011.
  • [42] A. Allı and B. Hazer, “Poly(N-isopropylacrylamide) thermoresponsive cross-linked conjugates containing polymeric soybean oil and/or polypropylene glycol,” Eur. Polym. J., vol. 44, no. 6, pp. 1701–1713, 2008.
  • [43] E. Isikci Koca, G. Bozdag, G. Cayli, D. Kazan, and P. Cakir Hatir, “Thermoresponsive hydrogels based on renewable resources,” J. Appl. Polym. Sci., vol. 137, no. 28, 2020.
  • [44] V. K. Singh, Sowmya, R. Kunal, A. Anis, Dillip, and K. Pradhan, “Olive oil based novel thermo-reversible emulsion hydrogels for controlled delivery applications,” doi: 10.1007/s10856-013 5112-1.
  • [45] I. N. Savina, V.Cnudde, S. D'Hollander, L. V. Hoorebeke, B. Mattiasson, I. Y. Galaev, and F. D. Prez,, “Cryogels from poly(2-hydroxyethyl methacrylate): Macroporous, interconnected materials with potential as cell scaffolds,” Soft Matter, vol. 3, no. 9, pp. 1176–1184, 2007.
  • [46] E. Brynda, M. Houska, J. Kysilka, M. Pradny, P. Lesny, P. Jendelova, J. Michalek, and E. Sykova, “Surface modification of hydrogels based on poly(2-hydroxyethylmethacrylate) with extracellular matrix proteins,” doi: 10.1007/s10856-008-3625-9.
  • [47] K. Şarkaya and A. Allı, “Synthesis and characterization of cryogels of p(HEMA-N vinylformamide) and p(HEMA-N-Vinylpyrrolidone) for chemical release behaviour,” J. Porous Mater., vol. 28, no. 3, pp. 853–865, 2021.
  • [48] E. Karadağ and Ö. B. Üzüm, “A study on water and dye sorption capacities of novel ternary acrylamide/sodium acrylate/PEG semi IPN hydrogels,” Polym. Bull. 2011 685, vol. 68, no. 5, pp. 1357–1368, 2011.
  • [49] K. Şarkaya, M. Bakhshpour, and A. Denizli, “Ag + ions imprinted cryogels for selective removal of silver ions from aqueous solutions,” Sep. Sci. Technol., pp. 1–12, 2018.
  • [50] N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, “Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering,” Acta Biomater., vol. 5, no. 1, pp. 406–418, 2009.
  • [51] Ö. B. Üzüm and E. Karadağ, “Equilibrium Swelling Studies of Chemically Cross-Linked Highly Swollen Acrylamide-Sodium Acrylate Hydrogels in Various Water-Solvent Mixtures,” http://dx.doi.org/10.1080/03602551003664537, vol. 49, no. 6, pp. 609–616, 2010.
  • [52] V. I. Lozinsky, I. Y. Galaev, F. M. Plieva, I. N. Savina, H. Jungvid, and B. Mattiasson, “Polymeric cryogels as promising materials of biotechnological interest,” Trends Biotechnol., vol. 21, no. 10, pp. 445–451, 2003.
  • [53] R. Keçili, İ. Dolak, B. Ziyadanoğulları, A. Ersöz, and R. Say, “Ion imprinted cryogel-based supermacroporous traps for selective separation of cerium(III) in real samples,” J. Rare Earths, vol. 36, no. 8, pp. 857–862, 2018.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü