P3HT: PCBM Tabanlı Organik Güneş Hücrelerinin Opteoelektronik Özelliklerinin Aktif Katman Kalınlığına Bağlı İncelenmesi

Bu çalışmada ITO/PEDOT:PSS/P3HT:PCBM/Al organik güneş hücrelerinin (OSC) üretimi ve optoelektronik karakterizasyon süreci üzerine yapılan araştırmanın sonuçlarını sunmaktadır. OSC'ler, 70, 110, 140, 175 ve 190 nm P3HT:PCBM aktif tabaka kalınlıklarına sahip olacak şekilde açık hava ortamında üretildi. Güneş hücrelerinin diyot özellikleri karanlıkta yapılan akım-gerilim (I-V) ölçümleri kullanılarak incelenmiştir. Soğurma karakteristikleri optik geçirgenlik spektroskopisi kullanılarak incelenmiş ve her numune için yasak enerji bant aralığı (Eg) hesaplanmıştır. Her bir güneş hücresi için hücre parametreleri, AM 1.5 güneş radyasyonu altında akım yoğunluğu-voltaj (J-V) ölçümleri kullanılarak incelenmiş ve önemli güneş hücresi parametreleri hesaplanmıştır. Güneş hücrelerinin FF değerinin 0,3239 ile 0,3409 arasında diyot idealite faktörü (n) düştükçe arttığı gözlendi. PCE'nin en yüksek değerinin 140 nm P3HT: PCBM kalınlığına sahip hücreye ait 0,59 olduğu bulunmuştur.

Investigation of Dependence of Optoelectronic Properties of P3HT: PCBM Based Organic Solar Cells on Active Layer Thickness

This paper presents the production and results of optoelectronic characterization process for ITO/PEDOT:PSS/P3HT:PCBM/Al organic solar cells (OSC). OSCs were produced in open air environment with various P3HT:PCBM active layer thicknesses of 70, 110, 140, 175 and 190 nm. The diode properties of the solar cells in the dark have been investigated by using current-voltage (I-V) measurements. The absorption characteristics have been investigated by using transmission spectroscopy, and optical band gap energy (Eg) for each sample has been calculated. Solar cell parameters for each solar cell has been investigated by using current density-voltage (J-V) measurements under AM 1.5 solar raditation, and important solar cell parameters have been calculated. It was observed that fill factor (FF) value of the solar cells increase between 0.3239 and 0.3409 with decreasing diode ideality factor (n) value. The highest value of PCE was found to be 0.59, which belongs to the cell having 140 nm P3HT:PCBM thickness.

___

  • [1] P. Heremans, D. Cheyns, B.P. Rand, “Strategies for increasing the efficiency of heterojunction organic solar cells: Material selection and device architecture,” Accounts of Chemical Research, vol. 42, no. 11, pp. 1740-1742, 2009.
  • [2] J. Nelson, “Polymer: Fullerene bulk heterojunction solar cells,” Materials Today, vol. 14, no. 10, pp. 462-470, 2011.
  • [3] F.C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing and coating techniques,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 394-412, 2009.
  • [4] P. Vanlaeke, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. Manca, P. Heremans, J. Poortmans, “Polythiophene based bulk heterojunction solar cells: Morphology and its implications,” Thin Solid Films, vol. 511, pp. 358-361, 2006.
  • [5] L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss, M. Schrödner, “Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk heterojunction polymer solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 476, 2009.
  • [6] R. Hegde, N. Henry, B. Whittle, H. Zang, B. Hu, J. Chen, K. Xiao, M. Dadmun, “The impact of controlled solvent exposure on the morphology of structure and function of bulk heterojunction solar cells,” Solar Energy Materials and Solar Cells, vol. 107, pp. 112–124, 2012.
  • [7] P.P. Khlyabich, B. Burkhart, A.E. Rudenko, B.C. Thompson, “Optimization and simplification of polymer-fullerene solar cells through polymer and active layer design,” Polymer, vol. 54, pp. 5267–5298, 2013.
  • [8] G. Li, R. Zhu, Y. Yang, “Polymer solar cells,” Nature Photonics, vol. 6, pp. 153–161, 2012.
  • [9] K. Kawano, J. Sakai, M. Yahiro, C. Adachi, “Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene)and fullerene derivatives,” Solar Energy Materials Solar Cells, vol. 93, pp. 514–518, 2009.
  • [10] B.C. Thompson, J.M.J. Fréchet, “Polymer - fullerene composite solar cells,” Angewandte Chemie, vol. 47, pp. 58–77, 2018.
  • [11] M.T. Dang, L. Hirsch, G. Wantz, “P3HT: PCBM, best seller in polymer photovoltaic research,” Advanced Materials, vol. 23, pp. 3597–3602, 2011.
  • [12] A.M. Ballantyne, T.A.M. Ferenczi, M. Campoy – Quiles, T.M. Clarke, M. Maurano, K.H. Wong, W. Zhang, N. Stingelin-Stutzmann, J.-S. Kim, D.D.C. Bradley, J.R. Durrant, I. McCulloch, M. Heeney, J. Nelson, “Understanding the influence of morphology on poly(3-hexylselenothiophene): PCBM solar cells,” Macromolecules, vol. 43, pp. 1169–1174, 2010.
  • [13] O. Oklobia, T. Sadat-Shafai, “A quantitative study of the formation of PCBM clusters upon thermal annealing of P3HT/PCBM bulk heterojunction solar cell,” Solar Energy Materials and Solar Cells, vol. 117, pp. 1–8, 2013.
  • [14] M. Campoy – Quiles, T. Ferenczi, T. Agostenilli, P.G. Etchegoin, Y. Kim, T.D. Anthapoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, “Morphology evolution via self-organisation and lateral and vertical diffusion in polymer: Fullerene solar cell blends,” Nature Materials, vol. 7, pp. 158–164. 2008
  • [15] V.D. Mihailetchi, H. Xie, B. de Boer, L.J.A. Koster, P.W.M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulkheterojunction solar cells,” Advanced Functional Materials, vol. 16, pp. 699–708, 2006.
  • [16] T.M. Clarke, J.R. Durrant, “Charge photogeneration in organic solar cells,” Chemical Reviews, vol. 110, pp. 6736–6767, 2010.
  • [17] Z. Zhao, L. Rice1, H. Efstathiadis, P. Haldar, “Thickness dependent effects of thermal annealing and solvent vapor treatment of poly(3-hexylthiophene) and fullerene bulk heterojunction photovoltaics,” Materials Research Society Symposium P – Photovoltaic Materials and Manufacturing Issues, Boston, 2008.
  • [18] C.Y. Nam, D. Su, C.T. Black, “High-performance air-processed polymer–fullerene bulk heterojunction solar cells,” Advanced Functional Materials, vol. 19, pp. 3552–3559, 2009.
  • [19] J. Jo, S.S. Kim, S.I. Na, B.K. Yu, D.Y. Kim, “Time-dependent morphology evolution by annealing processes on polymer: Fullerene blend solar cells,” Advanced Functional Materials, vol. 19, pp. 866–874, 2009.
  • [20] O. Oklobia,T.S.Shafai, “A quantitative study of the formation of PCBM clusters upon thermal annealing of P3HT/PCBM bulk heterojunction solar cell,” Solar Energy Materials and Solar Cells, vol. 117, pp. 1–8, 2013.
  • [21] F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J.R. Durrant, “Fullerene crystallisation as a key driver of charge separation in polymer: Fullerene bulk heterojunction solar cells,” Chemical Science, vol. 3, pp. 485–492, 2012.
  • [22] P. M.Buschbaum, “The active layer morphology organic solar cells probed with grazing incidence scattering techniques,” Advanced Materials, vol. 26, pp. 7692–7709, 2014.
  • [23] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, O. Ambacher, “Fullerene crystallisation as a key driver of charge separation in polymer: Fullerene bulk heterojunction solar cells,” Thin Solid Films, vol. 511–512, pp. 483–485, 2006.
  • [24] G. Li, V. Shrotriya, Y. Yao, Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Journal of Applied Physics, vol. 98, pp. 1-5, 2005.
  • [25] D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology, vol. 15, pp. 1317–1323, 2004.
  • [26] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, “Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac ımpedance spectroscopy,” Applied Materials & Interfaces, vol. 1, pp. 2107–2110, 2009.
  • [27] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, “Correlation between the photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids,” The Journal of Physical Chemistry C, vol. 111, pp. 6550–6560, 2007.
  • [28] Q. Wang, J.-E. Moser, M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” The Journal of Physical Chemistry B, vol. 109, pp. 14945–14953, 2005.
  • [29] L. Han, N. Koide, Y. Chiba, T. Mitate, “Modelling of an equivalent circuit for dyesensitized solar cells,” Applied Physics Letters, vol. 84, pp. 2433, 2004.
  • [30] E. H. Rhoderick, "Current-transport mechanisms," in Metal–Semiconductor Contacts, 1st ed., New York, USA: Oxford University Press, 1978, pp. 121–136.
  • [31] C. Temirci, B. Bati, M. Saglam, A. Türüt, “High-barrier height Sn/p-Si schottky diodes with interfacial layer by anodization process,” Applied Surface Science, vol. 172, pp. 1–7, 2001.
  • [32] M. Campos, L. O. C. Bulhoes, C. A. Lındıno, “Gas-Sensitive characteristics of metal/semiconductor polymer schottky device,” Sensors and Actuators A: Physical, vol. 87, pp. 67, 2000.
  • [33] J. Pankove, “Absorption,” in Optical Processes in Semiconductors, 1st ed., New Jersey, USA: Prentice-Hall Press, 1971, pp. 34-81.
  • [34] J. Nelson, “Introduction,” in The Physics of Solar Cells, 1st ed., UK: Imperial College Press, 2003, pp. 1–16.
  • [35] O. Oklobiaa, S. Komilianb, T. Sadat-Shafaib, “Impedance spectroscopy and capacitance–voltage measurements analysis: Impact of charge carrier lifetimes and mapping vertical segregation in bulk heterojunction P3HT: PCBM solar cells,” Organic Electronics, vol. 61, pp. 276–281, 2018.
  • [36] A. Iwan, M. Palewicz, M. Ozimek, A. Chuchmala, G. Pasciak, “Influence of aluminium electrode preparation on PCE values of polymeric solar cells based on P3HT and PCBM,” Organic Electronics, vol. 13, no. 11, pp. 2525–2531, 2012.
  • [37] J.W. Jeong, J. W. Huh, J.I. Lee, H.Y. Chu, I.K. Han, B.-K. Ju, “Effects of thermal annealing on the efficiency of bulk-heterojunction organic photovoltaic devices,” Current Applied Physics, vol. 10, no. 3, pp. S520–S524, 2010.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

R134a'ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi

Abdullah YILDIZ, Ragıp YILDIRIM

Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneyselİstatiksel Olarak İncelenmesi

Engin NAS, Yusuf ÖZBAKIŞ

Paralel Aktif Güç Filtresi için Bulanık Uyarlamalı Kesirli PI Denetleyici Tasarımı

Hakan GÜNDÜZ, Metin DEMİRTAŞ, Erdem İLTEN, Haris ÇALGAN

Tek Nokta Enjeksiyonlu Buji ile Ateşlemeli Bir Motorda Motor Devri ve Yükünün Motor Titreşimleri ve Gürültüye Etkisinin Deneysel İncelenmesi

Suat SARIDEMİR, Tolga TOPGÜL, Çağatay ZAMAN

Hidrotermal olarak Sentezlenen Çiçek benzeri NiO@Fe3O4'ün Katalitik Özellikleri

Nurdan KURNAZ YETİM

Jaya ve Öğretme-Öğrenme Tabanlı Optimizasyon Algoritmalarını Kullanarak Meteorolojik Faktörler ve Çeşitli Hava Kirleticileri ile Ozon Etkileşimlerinin Modellenmesi

Nurcan ÖZTÜRK

Kozmetik Bebek Yağlarında Dört Parabenin Tayini için Derin Ötektik Çözücülere Dayanan Vorteks Destekli Mikro Ekstraksiyon ve BoxBehnken Tasarımı ile Optimizasyon

Sezen Sivrikaya Özak

Papüloskuamöz Hastalıkların Belirlenmesi için Yapay Zeka Yöntemleriyle Kural Tabanlı Teşhis Algoritmalarının Geliştirilmesi

Muhammed Kürşad UÇAR, Serkan DÜZAYAK

CdTe Kuantum Noktası Katkısının E63, E7 ve SCLP Sıvı Kristal Malzemelerin Akım-Voltaj Karakteristikleri Üzerine Etkisi

Oğuz KÖYSAL, Gülsüm KOCAKÜLAH, Aliye KAHYAOĞLU, Mert YILDIRIM

Derin Öğrenme ve Destek Vektör Makineleri İle Görüntüden Cinsiyet Tahmini

Kıyas KAYAALP, Sedat METLEK