Nano ve Mikro Ölçekli Silis Malzemesinin Ferrokrom Cüruf Bazlı Geopolimerlerin Mekanik Özelliklerine Katkısı

Geleneksel çimentoların dezavantajları uluslararası sürdürülebilir ve yeşil kalkınma planları üzerinde yoğun talep yaşanmasına neden olmaktadır. Geopolimer malzemenin daha fazla geliştirilmesi veya alternatif malzemenin araştırılmasına dayalı çalışmaların gelecekte hızlanması beklenmektedir. Sıklıkla kullanılan Portland çimentosunun mekanik özelliklerinin geliştirilmesinde nano ölçekli malzemelerin katkısı literatürde kanıtlanmıştır. Nano ölçekli silika malzemeler, kimya ve malzeme mühendisliği gibi farklı bilim dallarında ve hatta sıradan Portland çimentosu üretiminde bile yoğun kullanılmasına ve araştırılmasına rağmen geopolimer üretiminde yeterince incelenmemiştir. Bu çalışmanın amacı bu konudaki boşlukları azaltmak ve önceden elde edilen bilgileri geopolimerler üzerine aktarmaktır. Bu çalışma esnasında nano ve mikro ölçekli silis malzemelerin ferrokrom cüruf bazlı geopolimerler üzerindeki etkisi değerlendirilmiştir. Elazığ ferrokrom cürufu alümino-silis kaynağı olarak bu çalışmada kullanılmıştır. Geopolimerleşme sürecini hızlandırmak için Nano-silis ve silis dumanı cüruf ağırlığının %2, %4, %6, %8 ve %10 oranlarında kullanılmıştır ve üretilen malzemelerin basınç ile çekme mukavemeti, elastisite modülü ve mikro yapısı üzerindeki etkisi incelenmiştir. Deney sonuçlarına göre, geopolimer karışıma uygun miktarda ince silis malzemesinin eklenmesiyle malzemenin yukarıda bahsedilen mekanik özelliklerinde iyileşme meydana gelmiştir. Ferrokrom cüruf yerine farklı mikro ve nano boyutlarında (15, 30 ve 45 nm) silis kullanım oranı optimum %6 olarak belirlenmiştir. Numunelerde uygun değerde Nano-silis kullanımı, malzemenin kimyasal bağlarında iyileşme, homojen ve daha yoğun dokuya sahip olmasını sağlamıştır ve SEM görüntülerinde bu durum açıkça görülmektedir. Basınç mukavemetinin artışının, Nano-silis ve silis dumanının uygun değerde kullanılması sonucunda malzemenin dokusunun yoğunlaşmasından ve kimyasal bağlarının iyileşmesinden kaynaklandığı düşünülmektedir.

Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer

Considering global trends in sustainable and green development as well as the major drawbacks of conventionalhydraulic cement, accelerate attempt for finding a suitable alternative and likely cause further development ofgeopolymeric cements in future. Influences of Nano scale Materials in improving the mechanical properties ofordinary Portland cement have been obviously proved. Despite the widespread use of these materials in differentfields of science, for instance, chemicals engineering, materials engineering and even ordinary Portland cement,the effect of Nano scale materials in geopolymers has not been investigated deservedly. The purpose of this studyis creating bridges to mitigate these gaps and shortcomings. Very fine silica particles (micro and Nano-silica)effects in ferrochrome slag based geopolymer have been evaluated in this research. Elazığ ferrochrome slag wasused as the main aluminosilicate source and then it was blended with Nano silica or silica fume in little amountsin order to accelerate geopolymerization. Nano-silica and silica fume have been used at 2,4,6,8 and 10% of totalbinder weight in this study due to probe fine silica effect on the mechanical specification of produced materialsuch as compressive strength, Static modulus of elasticity, Tensile Strength and microstructural change. Theexperimental results show all of these mention mechanical properties have been improved with adding fine silicain geopolymer mixes in optimum percentage of total binder weight. The best percentage of fine silica partialreplacement instead of FS is 6% at all of silica fume and three Nano particle size (15, 30 and 45 nm). SEM imagesassessment demonstrated homogenous and denser texture with acceptable chemical bonds improvements forsamples with optimum Nano-silica dosage. Compressive strength increase can be explained by densification ofthe matrix texture by using of Nano-silica and silica fume at optimum dosage.

___

  • [1] J. Davidovits, "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement," Journal of Materials education, vol. 16, pp. 91-91, 1994.
  • [2] J. S. J. van Deventer, J. L. Provis, and P. Duxson, "Technical and commercial progress in the adoption of geopolymer cement," Minerals Engineering, vol. 29, pp. 89-104, 2012.
  • [3] M. Sumesh, U. J. Alengaram, M. Z. Jumaat, K. H. Mo, and M. F. Alnahhal, "Incorporation of nano-materials in cement composite and geopolymer based paste and mortar - A review," Construction and Building Materials, vol. 148, pp. 62-84, 2017.
  • [4] H. Abdel-Gawwad and S. Abo-El-Enein, "A novel method to produce dry geopolymer cement powder," HBRC Journal, vol. 12, no. 1, pp. 13-24, 2016.
  • [5] A. Bilodeau and M. Malhotra, "High-volume fly ash system: Concrete solution for sustainable development," Aci Materials Journal, vol. 97, no. 1, pp. 41-48, 2000.
  • [6] N. Ranjbar, M. Mehrali, U. J. Alengaram, H. S. C. Metselaar, and M. Z. Jumaat, "Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures," Construction and building materials, vol. 65, pp. 114-121, 2014.
  • [7] M. M. Yadollahi and A. Benli, "Stress-strain behavior of geopolymer under uniaxial compression," Computers and Concrete, vol. 20, no. 4, pp. 381-389, 2017.
  • [8] M. M. Yadollahi, A. Benli, and R. Demirboga, "The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites," Construction and Building Materials, vol. 94, pp. 767-774, 2015.
  • [9] M. M. Yadollahi, A. Benli, and R. Demirboga, "Effects of elevated temperature on pumice based geopolymer composites," Plastics Rubber and Composites, vol. 44, no. 6, pp. 226-237, 2015.
  • [10] M. M. Yadollahi, R. Demirboga, and R. Polat, "Effect of heat treatment temperature on ground pumice activation in geopolymer composites," Science and Engineering of Composite Materials, vol. 21, no. 3, pp. 377-382, 2014.
  • [11] D. Lin, K. Lin, W. Chang, H. Luo, and M. Cai, "Improvements of nano-SiO2 on sludge/fly ash mortar," Waste management, vol. 28, no. 6, pp. 1081-1087, 2008.
  • [12] M. M. Khotbehsara, E. Mohseni, M. A. Yazdi, P. Sarker, and M. M. Ranjbar, "Effect of nanoCuO and fly ash on the properties of self-compacting mortar," Construction and Building Materials, vol. 94, pp. 758-766, 2015.
  • [13] B. Singh, G. Ishwarya, M. Gupta, and S. Bhattacharyya, "Geopolymer concrete: A review of some recent developments," Construction and building materials, vol. 85, pp. 78-90, 2015.
  • [14] J. He, "Synthesis and characterization of geopolymers for infrastructural applications," 2012.
  • [15] P. Sukmak, S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong, "Factors influencing strength development in clay–fly ash geopolymer," Construction and Building Materials, vol. 47, pp. 1125-1136, 2013.
  • [16] B.-h. Mo, H. Zhu, X.-m. Cui, Y. He, and S.-y. Gong, "Effect of curing temperature on geopolymerization of metakaolin-based geopolymers," Applied clay science, vol. 99, pp. 144-148, 2014.
  • [17] F. Sanchez and K. Sobolev, "Nanotechnology in concrete–a review," Construction and building materials, vol. 24, no. 11, pp. 2060-2071, 2010.
  • [18] S. Haruehansapong, T. Pulngern, and S. Chucheepsakul, "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nanoSiO2," Construction and Building Materials, vol. 50, pp. 471-477, 2014.
  • [19] N. León, J. Massana, F. Alonso, A. Moragues, and E. Sánchez-Espinosa, "Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production," Biosystems engineering, vol. 123, pp. 1-11, 2014.
  • [20] C. ASTM, "Standard test method for splitting tensile strength of cylindrical concrete," 2011.
  • [21] M. Shetty, "Concrete technology," S. chand & company LTD, pp. 420-453, 2005.
  • [22] A. S. f. Testing and M. C. C.-o. Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens), ASTM International, 2013.
  • [23] B. B. Jindal, Parveen, D. Singhal, and A. Goyal, "Predicting Relationship between Mechanical Properties of Low Calcium Fly Ash-Based Geopolymer Concrete," Transactions of the Indian Ceramic Society, vol. 76, no. 4, pp. 258-265, 2017.
  • [24] H. M. Khater, "Effect of nano-silica on microstructure formation of low-cost geopolymer binder," Nanocomposites, vol. 2, no. 2, pp. 84-97, 2016.