Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri

Bu çalışmada, günden güne daha geniş alanlarda kullanılan magnezyum tozmetal alaşımların endüstriyel uygulamalarda kullanılabilirliği incelenmiştir. Bu malzemenin hegzagonal sıkı paket kafes yapısından dolayı plastik deformasyonunda yaşanan zorlukları aşmak için geleneksel plastik deformasyon yöntemleri yerine toz metalurjisi yöntemi ile şekillendirilebilirliği hakkında literatürde bulunan çalışmalar derlenmiştir. Özellikle magnezyum partiküllerinin üretimi sürecinde oluşan yüzey oksidi tabakasının elimine edilmesi için kullanılabilecek yöntemlerle ilgili çalışmaların bulguları özetlenmiştir. Sonuç olarak press-sinter yöntemine göre daha sofistike yöntemler veya ikincil işlemler kullanılması durumunda döküm alaşımlarına göre daha yüksek dayanım gösteren Mg alaşımlarının üretiminin mümkün olduğu ve gelişen partikül malzeme üretim yöntemleri (Seçici lazer sinterleme, direkt enerji biriktirme gibi) ile birlikte yakın gelecekte tozmetal magnezyum alaşımlarının daha geniş alanlarda kullanılacağı öngörülmektedir. 

Powder Metallurgy Processing of Magnesium and Its Alloys

In this study, the usability of powder metal magnesium alloys in industrial applications was investigated. It is well known that there are difficulties in the plastic deformation of magnesium, due to its hexagonal closed package crystal structure. So it is thought that powder metallurgy can be used to overcome these aforementioned problems. Hence, the studies on the powder metallurgy processing of magnesium alloys were compiled. The findings of the studies on eliminating the surface oxide layer formed during the production of magnesium particles are summarized. As a result, when more sophisticated methods or secondary processes are used rather than press-sinter methods, it is possible to produce Mg alloys with higher strength than that of casted counterparts. Also, it is expected that in the near future along with the development of new kind of particulate material processing methods  (such as selective laser sintering, direct energy deposition) Mg alloys will be used in much greater amounts.

___

  • [1] US Department of Energy, “Global Transportation Energy Consumption: Examination of Scenarios to 2040 using ITEDD,” 2017. [Online]. Erişim: https://www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf
  • [2] M. Höök ve X. Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, c. 52, ss. 797–809, 2013.
  • [3] J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, “Biofuels: Environment, technology and food security,” Renewable and Sustainable Energy Reviews, c. 13, s. 6–7, ss. 1275–1287, 2009.
  • [4] P. Morone ve L. Cottoni, “Biofuels,” in Handbook of Biofuels Production, 2. baskı, R. Luque, C. Lin, K. Wilson, and J. Clark, Eds. Cambridge: Elsevier, 2016, ss. 61–83.
  • [5] A. Jambor ve M. Beyer, “New cars — new materials,” Materials & Design, c. 18, s. 4–6, ss. 203–209, 1997.
  • [6] “Light-Duty Automotive Technology , Carbon Dioxide Emissions , and Fuel Economy Trends : 1975 Through 2011,” 2014.
  • [7] M. L. Anderson ve M. Auffhammer, “Pounds that kill: The external costs of vehicle weight,” Review of Economic Studies, c. 81, s. 2, ss. 535–571, 2013.
  • [8] W. L. Dalmijn ve T. P. R. De Jong, “The development of vehicle recycling in Europe: Sorting, shredding, and separation,” JOM, c. 59, s. 11, ss. 52–56, 2007.
  • [9] A. I. Taub ve A. A. Luo, “Advanced lightweight materials and manufacturing processes for automotive applications,” MRS Bulletin, c. 40, s. 12, ss. 1045–1054, 2015.
  • [10] P. Seyfried, E. J. M. Taiss, A. C. Calijorne, F.-P. Li, and Q.-F. Song, “Light weighting opportunities and material choice for commercial vehicle frame structures from a design point of view,” Advances in Manufacturing, c. 3, s. 1, ss. 19–26, 2015.
  • [11] A. H. Musfirah ve A. . Jaharah, “Magnesium and Aluminum Alloys in Automotive Industry,” Journal of Applied Science Research, c. 8, s. 9, ss. 4865–4875, 2012.
  • [12] G. S. Cole ve A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, c. 35, s. 1, ss. 3–9, 1995.
  • [13] I. Polmear, D. StJohn, J. F. Nie, and M. Qian, “The Light Metals,” in Light Alloys, 5. baskı., Boston: Elsevier, 2017, ss. 1–29.
  • [14] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” The International Journal of Advanced Manufacturing Technology, c. 39, s. 9, ss. 851–865, 2008.
  • [15] W. Miller ve diğ. “Recent development in aluminium alloys for the automotive industry,” Materials Science and Engineering: A, c. 280, s. 1, ss. 37–49, 2000.
  • [16] I. Polmear, “Aluminium Alloys--A Century of Age Hardening,” Materials forum, c. 28, ss. 1–14, 2004.
  • [17] M. Easton, W. Qian Song, ve T. Abbott, “A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling,” Materials & Design, c. 27, s. 10, ss. 935–946, 2006.
  • [18] G. Yarkadaş, L. C. Kumruoğlu, ve H. Şevik, “The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy,” Materials Characterization, c. 136, s. November 2017, ss. 152–156, 2018.
  • [19] G. Germen, G. Yarkadaş, ve H. Şevik, “Influence of strontium addition on the wear behavior of Mg-3Al-3Sn alloys produced by gravity casting,” Materials Testing, c. 57, s. 11–12, ss. 997–1000, 2015.
  • [20] A. Gökçe, “Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting,” Metals and Materials International, 2019, DOI:10.1007/s12540-019-00539-1.
  • [21] S. Özarslan, H. Şevik, ve İ. Sorar, “Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting,” Materials Science and Engineering: C, c. 105, p. 110064, 2019.
  • [22] F. Bonollo, N. Gramegna, ve G. Timelli, “High-pressure die-casting: Contradictions and challenges,” Jom, c. 67, s. 5, ss. 901–908, 2015.
  • [23] B. L. Mordike ve T. Ebert, “Magnesium,” Materials Science and Engineering: A, c. 302, s. 1, ss. 37–45, 2001.
  • [24] A. Gökçe, F. Fındık, ve A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri - Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [25] R. M. German, Sintering: from Empirical Observations to Scientific Principles, Del Mar, CA, USA: Elsevier, 2014.
  • [26] “Economic considerations for powder metallurgy structural parts,” Powder Metallurgy Review. [Online]. Erişim: https://www.pm-review.com/introduction-to-powder-metallurgy/economic-considerations-for-powder-metallurgy-structural-parts/.
  • [27] T. Schubert ve diğ, “P/M aluminium structural parts for automotive application,” in Euro PM 2004, 2004, ss. 627–632.
  • [28] H. . Yao, Y. Li, ve A. T. . Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Applied Surface Science, c. 158, s. 1–2, ss. 112–119, 2000.
  • [29] P. Burke, C. Petit, S. Yakoubi, ve G. J. Kipouros, “Thermal Effects of Calcium and Yttrium Additions on the Sintering of Magnesium Powder,” Magnesium Technology 2011, ss. 481–484, 2016.
  • [30] P. Burke, “Investigation of the Sintering Fundamentals of Magnesium,” MS Thesis, Dept. of Process Engineering, Dalhousie University, Halifax, Canada, 2011.
  • [31] R. Yılmaz, A. Gökçe, ve H. Kapdıbaş, “The Effect of Ferro-Molybdenum Addition on the Microstructure and Mechanical Properties of Sintered Steel,” Advanced Materials Research, c. 23, ss. 71–74, 2007.
  • [32] A. Gökçe, F. Findik, ve A. O. Kurt, “Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy,” Practical Metallography, c. 54, s. 8, ss. 533–551, 2017.
  • [33] R. N. Lumley, T. B. Sercombe, ve G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminum,” Metallurgical and Materials Transactions A, c. 30, s. 2, ss. 457–463, 1999.
  • [34] P. Burke, J. Li, ve G. J. Kipouros, “DSC and FIB/TEM investigation of calcium and yttrium additions in the sintering of magnesium powder,” Canadian Metallurgical Quarterly, c. 55, s. 1, ss. 45–52, 2016.
  • [35] O. S. Gökçe, “Sıcak Pres ile Partikül Takviyeli Magnezyum Kompozitlerin Üretimi ve Kaplanması,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, Kocaeli Üniversitesi, Kocaeli, Turkey, 2018.
  • [36] N. Taşkın, “Magnezyum Talaşlarından Malzeme Üretimi,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, İstanbul Teknik Üniversitesi, İstanbul, Turkey, 2012.
  • [37] T. Iwaoka ve M. Nakamura, “Effect of Compaction Temperature on Sinterability of Magnesium and Aluminum Powder Mixtures by Warm Compaction Method,” Materials Transactions, c. 52, s. 5, ss. 943–947, 2011.
  • [38] M. Březina ve diğ., “Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications,” Metals, c. 7, s. 11, p. 461, 2017.
  • [39] P. Burke, G. J. Kipouros, D. Fancelli, ve V. Laverdiere, “Sintering Fundamentals of Magnesium Powders,” Canadian Metallurgical Quarterly, c. 48, s. 2, ss. 123–132, 2014.
  • [40] A. A. Nayeb-Hashemi ve J. B. Clark, “The Ca−Mg (Calcium-Magnesium) system,” Bulletin of Alloy Phase Diagrams, c. 8, s. 1, ss. 58–65, 1987.
  • [41] M. Wolff, T. Ebel, ve M. Dahms, “Sintering of magnesium,” Advanced Engineering Materials, c. 12, s. 9, ss. 829–836, 2010.
  • [42] Z. Li, X. Gu, S. Lou, ve Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, c. 29, s. 10, ss. 1329–1344, 2008.
  • [43] T. B. Abbott, M. A. Easton, ve C. H. Caceres, “Designing with Magnesium,” in Handbook of Mechanical Alloy Design, s. September, G. E. Totten, L. Xie, and K. Funatani, Eds. CRC Press, 2004, ss. 487–538.
  • [44] H. Westengen, “Magnesium alloys for structural applications ; recent advances,” Le Journal de Physique IV, c. 03, s. C7, ss. C7-491-C7-501, 1993.
  • [45] L. Lu, C. Y. H. Lim, ve W. M. Yeong, “Effect of reinforcements on strength of Mg9%Al composites,” Composite Structures, c. 66, s. 1–4, ss. 41–45, 2004.
  • [46] C. Moosbrugger, Ed., Engineering Properties of Magnesium Alloys, 1. baskı, Ohio, USA: ASM International, 2017.
  • [47] A. Gökçe, F. Findik, ve A. O. Kurt, “Sintering and aging behaviours of Al4CuXMg PM alloy,” Canadian Metallurgical Quarterly, c. 55, s. 4, ss. 391–401, 2016.
  • [48] D. Singh, C. Suryanarayana, L. Mertus, ve R.-H. Chen, “Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys,” Intermetallics, c. 11, s. 4, ss. 373–376, 2003.
  • [49] W. Xie, Y. Liu, D. S. Li, J. Zhang, Z. W. Zhang, ve J. Bi, “Influence of sintering routes to the mechanical properties of magnesium alloy and its composites produced by PM technique,” Journal of Alloys and Compounds, c. 431, s. 1–2, ss. 162–166, 2007.
  • [50] J. Chen, C.-G. Bao, Y. Wang, J.-L. Liu, ve C. Suryanarayana, “Microstructure and Lattice Parameters of AlN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy,” Acta Metallurgica Sinica (English Letters), c. 28, s. 11, ss. 1354–1363, 2015.
  • [51] X. Niu, H. Shen, ve J. Fu, “Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture,” Materials Letters, c. 221, ss. 4–7, 2018.
  • [52] X. Niu, H. Shen, G. Xu, L. Zhang, J. Fu, ve X. Deng, “Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused magnesium-aluminium (0, 3, 6, 9wt%) powder mixture,” Rapid Prototyping Journal, p. RPJ-08-2018-0213, 2019.
  • [53] E. A. Nyberg, S. R. Agnew, N. R. Neelameggham, ve M. O. Pekguleryuz, Magnesium Technology 2009. Wiley, 2009.
  • [54] K. Kondoh, E.-S. A. Hamada, H. Imai, J. Umeda, ve T. Jones, “Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production,” Materials & Design, c. 31, s. 3, ss. 1540–1546, 2010.
  • [55] L. Hou et al., “Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy,” Journal of Materials Science & Technology, c. 33, s. 9, ss. 947–953, 2017.
  • [56] M. Razavi, M. H. Fathi, ve M. Meratian, “Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications,” Materials Science and Engineering: A, c. 527, s. 26, ss. 6938–6944, 2010.
  • [57] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, ve T. Grosdidier, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering,” Acta Materialia, c. 119, ss. 55–67, 2016.
  • [58] M. Rashad, F. Pan, M. Asif, ve A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, c. 20, s. 6, ss. 4250–4255, 2014.
  • [59] P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, ve R. Král, “AE42 magnesium alloy prepared by spark plasma sintering,” Journal of Alloys and Compounds, c. 742, ss. 172–179, 2018.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Doğrusal Olmayan Bir Finansal Sistemin Hesaplamalı Cebir Metotlarıyla Dinamik Analizi

Orhan Özgür AYBAR

Endemik Alcea calvertii (Boiss) Boiss. Çiçeklerinin In vitro Antiradikal, Antimikrobiyal ve Antiproliferatif Aktiviteleri ve Fitokimyasal Kompozisyonu

Serhat KESER, Sevda KIRBAG, Suat TEKIN, Ismail TURKOGLU, Ersin DEMIR, Okkes YILMAZ, Suleyman SANDAL, Semra TURKOGLU, Omer KAYGILI, Fatma KESER, Mustafa KARATEPE

Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri

Esra ŞENGÜN ERMEYDAN, Ali DEĞİRMENCİ, İlyas ÇANKAYA, Fazlı ERDOĞAN

Yalın Altı Sigma Metodu ve Bankacılık Sektöründe Uygulanması

Rana GÜNDAY, Ayten YILMAZ YALÇINER

İki Farklı Kil Zeminin Stabilizasyonunda Amorf Silika Katkısı Kullanımının Karşılaştırılması

Ömür ÇİMEN, Burak DERELİ, Fatih Şerif COŞAN

Geri Dönüşümü Yapılmış PP ve ABS Prototip Malzemelerin Bazı Mekanik ve Termal Özelliklerinin İncelenmesi

Ömer ŞENGÜL, İlyas UYGUR, Nuri ŞEN

Bingöl İlinde Mera Verim ve Kalitesinin Yöneylere Bağlı Olarak Aylık Değişimi ve Otlatmaya Başlama Zamanının Belirlenmesi

Halit TARHAN, Erdal ÇAÇAN

Asimetrik Schiff Bazı Ni(II) Komplekslerinin Antimutajenik Aktivitesinin Değerlendirilmesi

Dilek NARTOP, Elvan HASANOĞLU ÖZKAN, Hamit Emre KIZIL, Güleray AĞAR, Nurşen SARI

Sağlık Teknolojisi Değerlendirmede Çok Kriterli Karar Verme Yaklaşımları Üzerine Bir Derleme Çalışması

Melis Almula KARADAYI, Beyza Özlem YILMAZ, Bilgehan Eren EROL, Hakan TOZAN

Yapı Malzemelerinin Yaşam Döngü Değerlendirmesi: Literatür Taraması

Nuray BENLİ YILDIZ, Emrah YILMAZ, Hakan ARSLAN