Kalıp Şartlandırıcı Serpantinde Oluşan Korozyonun İnhibitör Kullanımıyla Engellenmesi

Plastik enjeksiyon üretiminde üretilen ürünün, kalıptan soğutularak çıkarılması için su kullanılmaktadır. Zamanla kullanıma bağlı olarak ısınan suyun sıcaklığını istenilen derecede tutmak için chiller cihazları kullanılmaktadır. Enjeksiyon makinelerinde ısınan su, chiller cihazlarında bulunan bakır serpantin (eşanjör) yardımıyla soğutularak tekrar kullanıma hazır hale getirilmektedir. Bu çalışmada; bakır serpantinin korozyonu yapay soğutma suyu (SCW) ve yapay soğutma suyuna katılan 1000 ppm NaNO2 ortamlarında 21 gün süreyle sürekli su devir daimi yapılarak araştırılmıştır. Deney öncesi ve sonrası bakır serpantinin yüzeyi Taramalı Elektron Mikroskobu (SEM), Enerji Dağılımlı X-Ray Kırınımı (EDS) ve Atomik Kuvvet Mikroskobu (AFM) yöntemleri ile incelenmiştir. Korozyon inhibitörü olarak kullanılan NaNO2 bileşiğinin, bakır serpantin üzerinde bir koruyucu film oluşturarak korozyona karşı koruduğu belirlenmiştir.Anahtar Kelimeler: Bakır serpantin, Korozyon, NaNO2, Yapay soğutma suyu

Preventing Corrosion In The Mold Conditioner Serpentine By Using An Inhibitör

Water is used to remove the product generated in plastic injection production by cooling from the mold. Chiller devices are used to keep the temperature of the heated water at the desired temperature depending on the use over time. The water heated in the injection machines is cooled with the help of the copper serpentine (exchanger) in the chiller devices and made ready for use again. In this study; the corrosion of the copper serpentine was investigated in simulated cooling water (SCW) and 1000 ppm NaNO2 added simulated cooling water environments by continuous water circulation for 21 days. The surface of the copper serpentine was examined by Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Diffraction (EDS) and Atomic Force Microscope (AFM) before and after the experiments. It has been determined that the NaNO2 compound used as a corrosion inhibitor protects against corrosion by forming a protective layer on the copper serpentine.Keywords: Copper serpentine, Corrosion, NaNO2, Simulated cooling water

___

  • [1] D.J. Choi, S.J. You, J.G. Kim, Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems, Materials Science and Engineering A. 335 (2002) 228–235. https://doi.org/10.1016/S0921-5093(01)01928-1.
  • [2] S.S. Gaddamwar, A.N. Pawar, P.A. Naik, Similitude of membrane helical coil with membrane serpentine tube for characteristics of high-pressure syngas: A review, in: AIP Conference Proceedings, American Institute of Physics Inc., 2018: p. 020005. https://doi.org/10.1063/1.5038684.
  • [3] I. Milošev, Inhibition of copper corrosion by 1 , 2 , 3-benzotriazole : A review, 52 (2010) 2737–2749. https://doi.org/10.1016/j.corsci.2010.05.002.
  • [4] EPA, Copper Facts, US Environmental Protection Agency Office of Pesticide Programs. (2008).
  • [5] R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S.R. Srikumar, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique, Materials Science in Semiconductor Processing. (2018). https://doi.org/10.1016/j.mssp.2017.10.023.
  • [6] M.A. Amin, K.F. Khaled, Copper corrosion inhibition in O2-saturated H2SO4 solutions, Corrosion Science. 52 (2010) 1194–1204. https://doi.org/10.1016/j.corsci.2009.12.035.
  • [7] L.Ö. Avni YAZAN, Bakır ve Bakır Ürünleri Kullanım Alanları, M.T.A. Enstitüsü Teknoloji Şubesi. (2006) 43–47.
  • [8] Copper: introduction to the chemical element - Explain that Stuff, (n.d.). https://www.explainthatstuff.com/copper.html (accessed October 5, 2020).
  • [9] R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering: Fourth Edition, 2008. https://doi.org/10.1002/9780470277270.
  • [10] H. Gerengi, Anticorrosive properties of date palm (Phoenix dactylifera L.) fruit juice on 7075 type aluminum alloy in 3.5% NaCl solution, Industrial and Engineering Chemistry Research. 51 (2012) 12835–12843. https://doi.org/10.1021/ie301771u.
  • [11] H. Gerengi, H. Goksu, P. Slepski, The inhibition effect of mad honey on corrosion of 2007-type aluminium alloy in 3.5% nacl solution, Materials Research. 17 (2014) 255–264. https://doi.org/10.1590/S1516-14392013005000174.
  • [12] H. Gerengi, P. Slepski, G. Bereket, Dynamic electrochemical impedance spectroscopy and polarization studies to evaluate the inhibition effect of benzotriazole on copper-manganese-aluminium alloy in artificial seawater, Materials and Corrosion. 64 (2013) 1024–1031. https://doi.org/10.1002/maco.201206565.
  • [13] W. Faes, S. Lecompte, Z.Y. Ahmed, J. Van Bael, R. Salenbien, K. Verbeken, M. De Paepe, Corrosion and corrosion prevention in heat exchangers, Corrosion Reviews. 37 (2019) 131–155. https://doi.org/10.1515/corrrev-2018-0054.
  • [14] P. Slepski, H. Gerengi, A. Jazdzewska, J. Orlikowski, K. Darowicki, Simultaneous impedance and volumetric studies and additionally potentiodynamic polarization measurements of molasses as a carbon steel corrosion inhibitor in 1M hydrochloric acid solution, Construction and Building Materials. 52 (2014) 482–487. https://doi.org/10.1016/j.conbuildmat.2013.11.059.
  • [15] T.K. Hou, S.N. Kazi, A.B. Mahat, C.B. Teng, A. Al-Shamma’a, A. Shaw, Industrial Heat Exchanger: Operation and Maintenance to Minimize Fouling and Corrosion, in: Heat Exchangers - Advanced Features and Applications, InTech, 2017. https://doi.org/10.5772/66274.
  • [16] C. Frayne, Effective Control Of Waterside Corrosion and Heat Transfer Efficiency in Chemical Plant Cooling Systems, n.d.
  • [17] J.S. Gill, Inhibition of silica-silicate deposit in industrial waters, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 74 (1993) 101–106. https://doi.org/10.1016/0927-7757(93)80401-Y.
  • [18] G. Tansuǧ, T. Tüken, E.S. Giray, G. Findikkiran, G. Siǧircik, O. Demirkol, M. Erbil, A new corrosion inhibitor for copper protection, Corrosion Science. 84 (2014) 21–29. https://doi.org/10.1016/j.corsci.2014.03.004.
  • [19] C. Pearson, Role of iron in the inhibition of corrosion of marine heat exchangers-a review, British Corrosion Journal. 7 (1972) 61–68. https://doi.org/10.1179/000705972798323288.
  • [20] E. Chemistry, A. wachter, (1945) 9–11.
  • [21] A. Wachter, Sodium Nitrite as Corrosion Inhibitor for Water., Industrial & Engineering Chemistry. 37 (1945) 749–751. https://doi.org/10.1021/ie50428a021.
  • [22] J. Zuo, B. Wu, C. Luo, B. Dong, F. Xing, Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution, Corrosion Science. 152 (2019) 120–129. https://doi.org/10.1016/j.corsci.2019.03.007.
  • [23] I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, Influence of sodium nitrite concentration in aqueous corrosion solution on fatigue crack growth in carbon pipeline steel, International Journal of Fatigue. 128 (2019) 105192. https://doi.org/10.1016/j.ijfatigue.2019.105192.
  • [24] J.K. Das, B. Pradhan, Effect of cation type of chloride salts on corrosion behaviour of steel in concrete powder electrolyte solution in the presence of corrosion inhibitors, Construction and Building Materials. 208 (2019) 175–191. https://doi.org/10.1016/j.conbuildmat.2019.02.153.
  • [25] ISI-TAN – Isı Kontrol Sistemleri, (n.d.). https://www.isitan.com.tr/ (accessed November 15, 2020).
  • [26] M.G. Lavastrou, P. General, A. Mendoza, Quality certificate, 3559 (2008) 1–7.
  • [27] J. Sha, H. Ge, C. Wan, L. Wang, S. Xie, X. Meng, Y. Zhao, Corrosion inhibition behaviour of sodium dodecyl benzene sulphonate for brass in an Al 2 O 3 nano fl uid and simulated cooling water, Corrosion Science. 148 (2019) 123–133. https://doi.org/10.1016/j.corsci.2018.12.006.
  • [28] M. Hayyan, S.A. Sameh, A. Hayyan, I.M. Alnashef, Utilizing of Sodium Nitrite as Inhibitor for Protection of Carbon Steel in Salt Solution, 2012. www.electrochemsci.org (accessed December 21, 2019).
  • [29] H. Gerengi, G. Bereket, M. Kurtay, A morphological and electrochemical comparison of the corrosion process of aluminum alloys under simulated acid rain conditions, Journal of the Taiwan Institute of Chemical Engineers. 58 (2016) 509–516. https://doi.org/10.1016/j.jtice.2015.05.023.
  • [30] N. Fredj, T.D. Burleigh, Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films, Journal of The Electrochemical Society. 158 (2011) C104. https://doi.org/10.1149/1.3551525.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü