Isı Depolamalı Bir LPG Buharlaştırıcı Regülatörünün Deneysel Analizi

Bu çalışmada, taşıt LPG dönüşüm regülatörlerindeki soğuk çalıştırma probleminin çözümü için, faz değiştiren malzeme (PCM) kullanımıyla ısı enerjisi depolayabilen bir regülatör tasarlanmıştır. PCM’li regülatörün taşıt motoru üzerinde, rölanti çalışma koşullarındaki ısıl davranışı incelenmiştir. PCM’li regülatörün kullanılması ile oluşan egzoz emisyonları (HC, CO) benzinli çalışmadaki emisyonlar ile karşılaştırılmıştır. PCM’siz regülatör 3 saatte LPG ile çalışma sıcaklığının altına düşerken, aynı koşullarda, tasarlanan PCM’li regülatör 15 saat sonunda motoru LPG’de çalıştırabilmektedir. Motorun 12 saat soğumasından sonra, direkt LPG yakıtı ile çalıştırılması ile benzine nazaran HC emisyonlarında %17,32 ve CO emisyonlarında %28,71 düşüş elde edilmiştir. Bu regülatörün kullanımıyla LPG’den beklenen yakıt ekonomisi artırılabilmekte ve çevreye yayılan kirletici emisyonlar iyileştirilebilmektedir.

Experimental Analysis of an LPG Evaporator/Regulator with Heat Storage

In this study, to solve the cold start problem of LPG conversion regulators in vehicles, a regulator that can store thermal energy is designed by the use of phase change material (PCM). The thermal behavior of the regulator with PCM is tested at idle operating conditions on the engine. The exhaust emissions (HC, CO) output by the use of regulator with PCM are compared to the emissions on the gasoline mode. Regulator with PCM could start the engine with LPG after the 15 hours cooling duration of the engine, while the temperature of the regulator without PCM drops below the working temperature of engine with LPG in 3 hours under the same conditions. By means of the engine start directly with LPG, it is achieved that HC and CO emissions decrease about 17.32 % and 28.71 %, respectively after the 12 hours cooling duration of the engine. By the use of this regulator, the fuel economy expected from LPG can be enhanced and the pollutants emitted to the environment diminished.

___

  • [1] R. Dönmez, T. Güdü, “Taşıtlarda LPG kullanımı ve sonuçları,” 3. LPG-CNG Kongresi ve Sergisi Bildiriler Kitabı, Ankara, Türkiye, 2007, pp. 153-159.
  • [2] P. Price, S. Guo, M. Hirschmann, “Performance of an evaporator for an LPG powered vehicle,” Applied Thermal Engineering, vol. 24, pp. 1179–1194, 2004.
  • [3] Voltran Alternative Fuel Systems, Voltran Installation Manual, Istanbul, 2007, pp. 1-49.
  • [4] M. Gümüş, E. Kılıçaslan, A. K. Binark, Application of phase change materials to pre-heating of internal combustion engines, 3. Uluslararası İleri Teknolojiler Semp., Ankara, Ağustos, (2003), 18-20.
  • [5] L. L. Vasiliev, V.S. Burak, A. G. Kulakov, D. A. Mishkinis, P.V. Bohan, “Heat storage device for pre-heating internal combustion engines at start-up,” Int. J. Therm. Sci., vol. 38, pp. 98-104, 1999.
  • [6] L. L. Vasiliev, V.S. Burak, A. G. Kulakov, D. A. Mishkinis, P.V. Bohan, “Latent heat storage modules for preheating internal combustion engines: Application to a bus petrol engine,” Applied Thermal Engineering, vol. 20, pp. 913-923, 2000.
  • [7] Z. Liu, L. Li, B. Deng, “Cold start characteristics at low temperatures based on the first firing cycle in an LPG engine,” Energy Conversion and Management, vol. 48, pp. 395–404, 2007.
  • [8] G. Li, L. Li, Z. Liu, Z. Li, D. Qiu, “A real time no emissions measurement during cold start in LPG SI engine,” Energy Conversion and Management, vol. 48, pp. 2508–2516, 2007.
  • [9] H. Kwak, C. L. Myung, S. Park, “Experimental investigation on the time resolved THC emission characteristics of liquid phase LPG injection (LPLI) engine during cold start,” Fuel, vol. 86, pp. 1475–1482, 2007.
  • [10] D. G. Snelgrove, P. Dupont, R. Bonetto, “An investigation into the influence of LPG (autogas) composition on the exhaust emissions and fuel consumption of 3 bi-fuelled renault vehicles,” SAE Papers, vol. 961170, 1996.
  • [11] D. Y. Wu, R. D. Matthews, J. Zheng, K. Shen, J. Chiu, C. Mock, S. Jaeger, “Texas project: Part 3–cycle emissions of light-duty vehicles operating on CNG, LPG, federal phase 1 reformulated gasoline and/or low sulphur certification gasoline,” SAE Special Publications, vol. 1208, pp. 385–414, 1996.
  • [12] R. F. Klausmeier, I. F. Billick, “Comparative analysis of the environmental impact of alternative transportation fuels,” Energy & Fuels, vol. 7, pp. 1–2, 1993.
  • [13] M. S. Newkirk, L. R. Smith, M.E. Payne, J.S. Segal, “Reactivity and exhaust emissions from an EHC-equipped LPG conversion vehicle operating on butane/propane fuel blends,” SAE Special Publications, vol. 1208, pp. 195–206, 1996.
  • [14] P. Bielaczyc, A. Szczotka, H. Brodzinski, “Analysis of the exhaust emissions from vehicles fuelled with petrol or LPG and CNG alternatively,” Journal of Kones Combustion Engines, vol. 1-2, pp. 363-370, 2001.
  • [15] P. Bielaczyc, J. Merkisz, “Euro III/Euro IV emissions – A study of cold start and warm-up phases with a SI (spark ignition) engine,” SAE Papers, vol. 1, pp. 1073, 1999.
  • [16] S. Huixian, S. Tariq, S. Subrate, “An investigation of catalytic converter performances during cold starts,” SAE Papers, vol. 01, pp. 3473, 1999.
  • [17] C. Yong, W. Jian-Xin, Z. Ren-Jun, W. Ning, “Analysis of combustion behavior during cold-start and warm-up process of SI engine,” SAE Papers, vol. 1, no. 3557, 2001.
  • [18] M. Gumus, A. Ugurlu, “Application of phase change materials to pre-heating of evaporator and pressure regulator of a gaseous sequential injection system,” Applied Energy, vol. 88, pp. 4803–4810, 2011.
  • [19] M. Gumus, “Reducing cold-start emission from internal combustion engines by means of thermal energy storage system”, Appl. Therm. Eng., vol. 29, pp. 652-660, 2009.
  • [20] E. Korin, R. Reshef, D. Tshernichovesky, and E. Sher, “Reducing coldstart emission from internal combustion engines by means of a catalytic converter embedded in a phase change material”, Proceedings of the Institution of Mechanical Engineers, London, 1999.
  • [21] N. Javani, I. Dincer, G. F. Naterer, G. L. Rohrauer, “Modeling of passive thermal management for electric vehicle battery packs with PCM between cells”, Applied Thermal Engineering, vol. 73, pp. 307-316, 2014.
  • [22] M. Ahmed, O. Meade, M. A. Medina, “Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials”, Energy Conversion and Management, vol. 51,pp. 383–392, 2010.