İnsan Serum Albümin Nanopartikül/surfaktant Polimer Temelli Sensör ile Metil Paratiyonun Enzimsiz Elektroanalizi

Bu çalışmada, insan serum albümin nanopartiküller (HSA NP) ve elektrobiriktirilmiş yüzey aktif polisetiltrimetil amonyum bromür p(CTAB) film kaplı grafit elektrotlar (PGE) tehlikeli bir çevresel kirletici olan metil paratiyonun (MP) hassas ve seçici tespiti için elektrokimyasal sensör olarak kullanıldı. Elde edilen HSA NP/p(CTAB)/PGE mikroskopik ve elektrokimyasal olarak karakterize edildi. Diferansiyel puls voltametri (DPV) tekniği ile MP için elde edilen doğrusal çalışma aralığı 0,01-0,1 µM ve gözlenebilme sınırı ise 6 nM olarak tespit edildi. MP tespiti için geliştirilen enzim kullanımı gerektirmeyen ve basit hazırlama stratejisine sahip HSA NP/p(CTAB) tabanlı elektrokimyasal sensör, çevre koruma ve gıda güvenliği açısından izleme sürecini de basitleştirme potansiyeline sahiptir.

Human Serum Albumin Nanoparticles/surfactant Polymer Based Sensor for the Non-enzymatic Electroanalysis of Methyl Parathion

In this study, human serum albumin nanoparticles (HSA NP) and electrodeposited surfactant polycetyltrimethyl ammonium bromide p(CTAB) film coated graphite electrodes (PGE) were utilized as an electrochemical sensor for the sensitive and selective detection of a hazardous environmental pollutant, methyl parathion (MP). The fabricated HSA NP/p(CTAB)/PGE was characterized microscopically and electrochemically. The linear working range obtained for the MP was determined as 0.01-0.1 µM and the detection limit as 6 nM by differential pulse voltammetry (DPV) technique. The HSA NP/p(CTAB) based electrochemical sensor developed for MP detection with a simple preparation strategy and did not require the use of enzymes and has the potential to be applied in environmental protection and food safety monitoring processes. 

___

  • [1] M. Govindasamy, S. Sakthinathan, S. M. Chen, T. W. Chiu, A. Sathiyan, ve J. P. Merlin, “Reduced Graphene Oxide Supported Cobalt Bipyridyl Complex for Sensitive Detection of Methyl Parathion in Fruits and Vegetables,” Electroanalysis, c. 29, s. 8, ss. 1950–1960, 2017.
  • [2] D. M. Maxwell, K. M. Brecht, I. Koplovitz, ve R. E. Sweeney, “Acetylcholinesterase inhibition: Does it explain the toxicity of organophosphorus compounds?,” Arch. Toxicol., c. 80, s. 11, ss. 756–760, 2006.
  • [3] “WHO Recommended Classification of Pesticides by Hazard and Guidelines to he WHO recommended classification of pesticides by hazard and guidelines to classification, 2009 edition - International Program on Chemical Safety, World Health Organization [Erişim: 30-Haz-2020].
  • [4] G. M. Benke, K. L. Cheever, F. E. Mirer, ve S. D. Murphy, “Comparative toxicity, anticholinesterase action and metabolism of methyl parathion and parathion in sunfish and mice,” Toxicol. Appl. Pharmacol., c. 28, s. 1, ss. 97–109, 1974.
  • [5] EC Drinking Water Directive 98/83/EC European Commission (1998).
  • [6] C. Liu, B. Guo, ve J. Xue, “Analytical Methods for Pesticides and Herbicides,” Water Environ. Res., c. 90, s. 10, ss. 1323–1347, 2018.
  • [7] J. Chen, W. T. Zhang, Y. Shu, X. H. Ma, and X. Y. Cao, “Detection of Organophosphorus Pesticide Residues in Leaf Lettuce and Cucumber Through Molecularly Imprinted Solid-Phase Extraction Coupled to Gas Chromatography,” Food Anal. Methods, c. 10, s. 10, ss. 3452–3461, 2017.
  • [8] Y. Shin, J. Lee, J. Lee, J. Lee, E. Kim, K.H. Liu, H. S. Lee, ve J. H. Kim, “Validation of a Multiresidue Analysis Method for 379 Pesticides in Human Serum Using Liquid Chromatography-Tandem Mass Spectrometry,” J. Agric. Food Chem., c. 66, s. 13, ss. 3550–3560, 2018.
  • [9] A. V. B. Reddy, Z. Yusop, J. Jaafar, A. B. Aris, Z. A. Majid, K. Umar, ve J. Talib, “Simultaneous determination of three organophosphorus pesticides in different food commodities by gas chromatography with mass spectrometry,” J. Sep. Sci., c. 39, s. 12, ss. 2276–2283, 2016.
  • [10] A. Menezes Filho, F. N. dos Santos, ve P. A. de Paula Pereira, “Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes,” Talanta, c. 81, s. 1–2, ss. 346–354, 2010.
  • [11] Y. Zeng, D. Yu, Y. Yu, T. Zhou, ve G. Shi, “Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) nanocomposite film modified electrode,” J. Hazard. Mater., c. 217–218, ss. 315–322, 2012.
  • [12] A. Rhouati, M. Majdinasab, ve A. Hayat, “A perspective on non-enzymatic electrochemical nanosensors for direct detection of pesticides,” Current Opinion in Electrochemistry, c. 11. Elsevier B.V., ss. 12–18, 2018.
  • [13] J. Gong, L. Wang, ve L. Zhang, “Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite,” Biosens. Bioelectron., c. 24, s. 7, ss. 2285–2288, 2009.
  • [14] T. H. V. Kumar ve A. K. Sundramoorthy, “Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites,” Anal. Chim. Acta, c. 1074, ss. 131–141, 2019.
  • [15] N. K. Bakirhan, B. Uslu, ve S. A. Ozkan, “The Detection of Pesticide in Foods Using Electrochemical Sensors,” Food Safety and Preservation, Elsevier, 2018, ss. 91–141.
  • [16] P. Kumar, K. H. Kim, ve A. Deep, “Recent advancements in sensing techniques based on functional materials for organophosphate pesticides,” Biosensors and Bioelectronics, c. 70., ss. 469–481, 2015.
  • [17] F. Arduini, S. Cinti, V. Scognamiglio, ve D. Moscone, “Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis,” Microchim. Acta, c. 183, s. 7, ss. 2063–2083, 2016.
  • [18] S. Sahin, H. Selek, G. Ponchel, M. T. Ercan, M. Sargon, A. A. Hincal, ve H. S. Kas, “Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres,” J. Control. Release, c. 82, s. 2–3, ss. 345–358, 2002.
  • [19] M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari ve P. Ascenzi, “The extraordinary ligand binding properties of human serum albumin,” IUBMB Life, c. 57, s. 12, ss. 787–796, 2005.
  • [20] G. Fanali, A. D. Masi, V. Trezza, M. Marino, M. Fasano, ve P. Ascenzi, “Human serum albumin: From bench to bedside,” Molecular Aspects of Medicine, c. 33, s. 3, ss. 209–290, 2012.
  • [21] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, ve K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review,” J. Control. Release, c. 65, s. 1–2,ss. 271–284, 2000.
  • [22] D. Silva, C. M. Cortez, J. Cunha-Bastos, ve S. R. W. Louro, “Methyl parathion interaction with human and bovine serum albumin,” Toxicol. Lett., c. 147, s. 1, ss. 53–61, 2004.
  • [23] D. C. Carter ve J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem., c. 45, s. C, ss. 153–176, 1994.
  • [24] K. Langer, M. G. Anhorn, I. Steinhauser, S. Dreis, D. Celebi, N. Schrickel, S. Faust, ve V. Vogel, “Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation,” Int. J. Pharm., c. 347, s. 1–2, ss. 109–117, 2008.
  • [25] A. O. Elzoghby, W. M. Samy, ve N. A. Elgindy, “Albumin-based nanoparticles as potential controlled release drug delivery systems,” Journal of Controlled Release, c. 157, s. 2., ss. 168–182, 2012.
  • [26] E. Ertugen, A. Tunçel, ve F. Yurt, “Docetaxel loaded human serum albumin nanoparticles; synthesis, characterization, and potential of nuclear imaging of prostate cancer,” J. Drug Deliv. Sci. Technol., c. 55, s. 101410, 2020.
  • [27] O. Akbal, T. Vural, S. Malekghasemi, B. Bozdoğan, ve E. B. Denkbaş, “Saponin loaded montmorillonite-human serum albumin nanocomposites as drug delivery system in colorectal cancer therapy,” Appl. Clay Sci., c. 166, ss. 214–222, 2018.
  • [28] M. Hasanzadeh, A. Mohammadzadeh, M. Jafari, ve B. Habibi, “Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB‑chitosan) doped with silver nanoparticles,” Int. J. Biol. Macromol., c. 120, ss. 2048–2064, 2018.
  • [29] Y. J. Yang, L. Guo, ve W. Zhang, “The electropolymerization of CTAB on glassy carbon electrode for simultaneous determination of dopamine, uric acid, tryptophan and theophylline,” J. Electroanal. Chem., c. 768, ss. 102–109, 2016.
  • [30] K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. Von Briesen, ve D. Schubert, “Optimization of the preparation process for human serum albumin (HSA) nanoparticles,” Int. J. Pharm., c. 257, s. 1–2, ss. 169–180, 2003.
  • [31] S. Das, R. Banerjee, ve J. Bellare, “Aspirin Loaded Albumin Nanoparticles by Coacervation: Implications in Drug Delivery,” Trends Biomater Artif Organs, c. 18, s.2, ss.203-12, 2005.
  • [32] K. Kakaei and K. Hasanpour, “Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction,” J. Mater. Chem. A, c. 2, s. 37, ss. 15428–15436, 2014.
  • [33] C. Weber, C. Coester, J. Kreuter, ve K. Langer, “Desolvation process and surface characterisation of protein nanoparticles,” Int. J. Pharm., c. 194, s. 1, ss. 91–102, 2000.
  • [34] J. Irache, M. Merodio, A. Arnedo, M. Camapanero, M. Mirshahi, and S. Espuelas, “Albumin Nanoparticles for the Intravitreal Delivery of Anticytomegaloviral Drugs,” Mini-Reviews Med. Chem., c. 5, s. 3, ss. 293–305, 2005.
  • [35] X. Tan, B. Li, K. Y. Liew, ve C. Li, “Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion,” Biosens. Bioelectron., vc. 26, s. 2, ss. 868–871, 2010.
  • [36] G. Liu ve Y. Lin, “Electrochemical stripping analysis of organophosphate pesticides and nerve agents,” Electrochem. commun., c. 7, s. 4, ss. 339–343, 2005.
  • [37] N. Gao, C. He, M. Ma, Z. Cai, Y. Zhou, G. Chang, Xianbao Wang,YunbinHeb, “Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor,” Anal. Chim. Acta, c. 1072, ss. 25–34, 2019.
  • [38] R. Karthik, J.V. Kumar, S.M. Chen, T. Kokulnathan,T.W. Chen, S. Sakthinathan,T.W. Chiu ve V. Muthuraj, “Development of novel 3D flower-like praseodymium molybdate decorated reduced graphene oxide: An efficient and selective electrocatalyst for the detection of acetylcholinesterase inhibitor methyl parathion,” Sensors Actuators, B Chem., c. 270, ss. 353–361, 2018.
  • [39] W. Yazhen, Q. Hongxin, H. Siqian, ve X. Junhui, “A novel methyl parathion electrochemical sensor based on acetylene black-chitosan composite film modified electrode,” Sensors Actuators, B Chem., c. 147, s. 2, ss. 587–592, 2010.
  • [40] J. N. Nirmala, A. Kumaravel, M. Chandrasekaran, “Stearic acid modified glassy carbon electrode for electrochemical sensing of parathion and methyl parathion.” J Appl Electrochem., c. 40, ss.1571–1574, 2010.
  • [41] J. Gong, X. Miao, H. Wan, ve D. Song, “Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor,” Sensors Actuators, B Chem., c. 162, s. 1, ss. 341–347, 2012.
  • [42] H. L. Tcheumi, I. K. Tonle, E. Ngameni, ve A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode,” Talanta, c. 81, s. 3, ss. 972–979, 2010.
  • [43] X. Tian, L. Liu, Y. Li, C.Yang, Z. Zhou, Y. Nie, ve Y. Wang “Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water,” Sensors Actuators, B Chem., c. 256, ss. 135–142, 2018.
  • [44] L. Zhao, F. Zhao, ve B. Zeng, “Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode,” Sensors Actuators, B Chem., c. 176, ss. 818–824, 2013.
  • [45] Z. Wang, B. Ma, C. Shen, ve L. Z. Cheong, “Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor,” Talanta, c. 197, ss. 356–362, 2019.
  • [46] G. H. S. Rodrigues, C. M. Miyazaki, R. J. G. Rubira, C. J. L. Constantino, ve M. Ferreira, “Layer-by-Layer Films of Graphene Nanoplatelets and Gold Nanoparticles for Methyl Parathion Sensing,” ACS Appl. Nano Mater., vol. 2, no. 2, pp. 1082–1091, 2019.
  • [47] R. Xue, T. F. Kang, L. P. Lu, and S. Y. Cheng, “Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides,” Appl. Surf. Sci., c. 258, s. 16, ss. 6040–6045, 2012.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü