Düşük Dolum Oranında İkili Karışımlarla Yüklü Üniform Olmayan Atımlı Isı Borusunun Deneysel İncelenmesi

Bu çalışmada, düşük bir dolum oranında ikili karışımlarla yüklü, üniform olmayan kanal profiline sahip düz plakalı kapalı döngülü atımlı bir ısı borusunun ısıl performansı ve akış davranışı deneysel olarak incelenmiştir. Deneyler kapsamında iş akışkanı olarak, etanol (E) ve metanolün (M) farklı hacim oranları (E:M = 1:1, 1:2 ve 2:1) için elde edilen ikili karışımları kullanılmıştır. Dolum oranı %20 olarak sabit tutulmuş olup; 0o, 45o ve 90o olmak üzere üç farklı eğim açısında çalışılmıştır. Akış davranışı yüksek hızlı kamera ile elde edilen eş zamanlı görüntüler üzerinden irdelenmiştir (saniyede 1000 görüntü). Yapılan çalışma sonucunda; karışım oranının çalışmaya başlama performansı üzerinde önemli bir etkiye sahip olduğu; artan metanol oranı ile ısıl performansın arttığı ve ısı borusunun, tüm karışım oranlarında, yer çekimi desteği olmadan da çalışabildiği belirlenmiştir. Isı transfer karakteristiklerinde artan eğim açısıyla iyileşme gözlemlenmiştir. Akış görüntüleri aracılığıyla, akış pasajları içerisindeki fiziksel olaylar tanımlanmıştır.         

Experimental Investigation of a Non-Uniform Pulsating Heat Pipe Charged by Binary Mixtures at a Low Filling Ratio

In this study, thermal performance and flow behavior of flat-plate closed loop pulsating heat pipe having non-uniform channel profile and being charged by binary mixtures at a low filling ratio are experimentally investigated. In the experiments, binary mixtures of ethanol (E) and methanol (M) obtained at different volume mixing ratio (E:M = 1:1, 1:2 and 2:1) are used as working fluid. The filling ratio is kept constant as 20%; while it is studied three different inclination angles as 0o, 45o and 90o. Flow behavior is investigated via simultaneous images obtained by a high speed camera (1000 fps). It is concluded that the volume mixing ratio has a great importance on startup performance, the thermal performance increases with increasing methanol ratio, and the heat pipe can operate at all mixing ratios without the aid of gravity. It is observed that the heat transfer characteristics improve with increasing inclination angle. Through the flow images, physical phenomena in the flow passages are defined.        

___

  • [1] H. Akachi, “Structure of a heat pipe,” U.S. Patent 4 921 041, May, 1, 1990.
  • [2] M. Mameli, L. Araneo, S. Filippeschi, L. Marelli, R. Testa, and M. Marengo, “Thermal response of a closed loop pulsating heat pipe under a varying gravity force,” International Journal of Thermal Science, vol. 80, pp. 11–22, 2014.
  • [3] V. Ayel, L. Araneo, A. Scalambra, M. Mameli, C. Romestant, A. Piteau, M. Marengo, S. Filippeschi, and Y. Bertin, ”Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force,” International Journal of Thermal Science, vol. 96, pp. 23–34, 2015.
  • [4] L. Lv, J. Li, and G. Zhou, “A robust pulsating heat pipe cooler for integrated high power LED chips,” Heat Mass Transfer, vol. 53, pp. 3305–3313, 2017.
  • [5] M. Cheng, and J. Li, “Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles,” Journal of Energy Storage, vol. 32, 2020, Art. no. 101715.
  • [6] P. Khalilmmoghadam, A. Rajabi-Ghahnavieh, and M. B. Shafii, ”A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe,” Renewable Energy, vol. 163, pp. 2115–2127, 2021.
  • [7] P. Charoensawan, S. Khandekar, M. Groll, and P. Terdtoon, “Closed loop pulsating heat pipes Part A: parametric experimental investigations,” Applied Thermal Engineering, vol. 23, pp. 2009–2020, 2003.
  • [8] S. Khandekar, N. Dollinger, and M. Groll, “Understanding operational regimes of closed loop pulsating heat pipes: An experimental study,” Applied Thermal Engineering, vol. 23, pp. 707–719, 2003.
  • [9] S. Jun, and S. J. Kim, “Comparison of the thermal performance and flow characteristics between closed-loop and closed-end micro pulsating heat pipes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 890–901, 2016.
  • [10] G. Spinato, N. Borhani, and J. R. Thome, “Operational regimes in a closed loop pulsating heat pipe,” International Journal of Thermal Sciences, vol. 102, pp. 78–88, 2016.
  • [11] K. H. Chien, Y. T. Lin, Y. R. Chen, K. S. Yang, and C. C. Wang, “A novel design of pulsating heat pipe with fewer turns applicable to all orientations,” International Journal of Heat and Mass Transfer, vol. 55, pp. 5722–5728, 2012.
  • [12] G. H. Kwon, and S. J. Kim, “Operational characteristic of pulsating heat pipes with a dual-diameter tube,” International Journal of Heat and Mass Transfer, vol. 75, pp. 184–195, 2014.
  • [13] G. H. Kwon, and S. J. Kim, “Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel,” International Journal of Heat and Mass Transfer, vol. 89, pp. 817–828, 2015.
  • [14] Z. Wan, X. Wang, and C. Feng, “Heat transfer performances of the capillary loop pulsating heat pipes with spring-loaded check valve,” Applied Thermal Engineering, vol. 197, 2020, Art. no. 114803.
  • [15] Y. Zhu, X. Cui, H. Han, and S. Sun, “The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures,” International Journal of Heat and Mass Transfer, vol. 77, pp. 834–842, 2014.
  • [16] X. Han, X. Cui, Y. Zhu, T. Xu, Y. Sui, and S. Sun, “Experimental study on a closed-loop pulsating heat pipe (CLHP) charged with water-based binary zeotropes and the corresponding pure fluids,” Energy, vol. 109, pp. 724–736, 2016.
  • [17] X. Cui, Z. Qiu, J. Weng, and Z. Li, “ Heat transfer performance of closed loop pulsating heat pipes with methanol-based binary mixtures,” Experimental Thermal Fluid Science, vol. 76, pp. 253–263, 2016.
  • [18] W. Wang, X. Cui, and Y. Zhu, “Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures,” Heat Mass Transfer, vol. 53, pp. 1983–1994, 2017.
  • [19] R. Xu, C. Zhang, H. Chen, Q. Wu, and R. Wang, “Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures,” International Journal of Heat and Mass Transfer, vol. 137, pp. 31–41, 2019.
  • [20] B. Markal, and R. Varol, “Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures,” Journal of the Brazilian Society of Mechanical Science and Engineering, vol. 42, 2020, Art. no. 549.
  • [21] B. Markal, and R. Varol, “Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures,” International Communications in Heat and Mass Transfer, vol. 121, 2021, Art. no. 105084.
  • [22] B. Markal, and K. Aksoy, ”The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe,” Heat and Mass Transfer, 2020. Available: https://doi.org/10.1007/s00231-020-02988-6
  • [23] K. S. Yang, Y. C. Cheng, M. C. Liu, and J. C. Shyu, “Micro pulsating heat pipes with alternate microchannel widths,” Applied Thermal Engineering, vol. 83, pp. 131–138, 2015.
  • [24] S. J. Kline, and F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, vol. 75, no. 1, pp. 3–8, 1953.
  • [25] H. Yang, S. Khandekar, and M. Groll, “Performance characteristics of pulsating heat pipes as integral thermal spreaders,” International Journal of Thermal Sciences, vol. 48, pp. 815–824, 2009.
  • [26] X. Liu, X. Han, Z. Wang, G. Hao, Z. Zhang, and Y. Chen, “Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery,” Energy Conversion and Management, vol. 205, 2020 Art. no. 112404.
  • [27] S. Shi, X. Cui, H. Han, J. Weng, and Z. Li, ”A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures,” Applied Thermal Engineering, vol. 102, pp. 1219–1227, 2016.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü