1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H- pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi

Bu çalışmanın amacı, 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol bileşiğinin X- ışınları tek kristal kırınım yöntemi ile kristal yapısının ve Hirshfeld yüzey analizinin araştırılmasıdır. Kapalı formülü C24H21ClN2O olan bu bileşikte; 4-klorofenil, 2-metilfenil ve benzen halkaları, 3-metil-1H-pirazol halkasına göre sırasıyla 59.8 (2), 25.2 (2) ve 45.6 (2)°’ lik dihedral açılarıyla yönlenmektedirler. Moleküller, moleküler paketlemenin dengelenmesine katkıda bulunmak için moleküller arası C–H ··· π etkileşimleriyle bağlanmıştır. Ayrıca bileşikteki supramoleküler etkileşimleri doğrulamak ve ölçmek için Hirshfeld yüzey analizi kullanılmıştır. Elde edilen veriler, kristal paketlemede en önemli katkıların H···H (%49.8), H···C/C···H (%27.6) ve H ··· Cl/Cl· ··H (%10.4) etkileşimlerinden kaynaklandığını göstermiştir.

Crystal structure and Hirshfeld surface analysis of 1-(4-chlorophenyl)- 3-methyl-5-{4-[(2-methylphenyl)methoxy]phenyl}-1H-pyrazole

The aim of the present work is to explore crystal structure and hirshfeld surface analysis of 1-(4-chlorophenyl)- 3-methyl-5-{4-[(2-methylphenyl)methoxy]phenyl}-1H-pyrazole. In the title compound, C24H21ClN2O, the 4- chlorophenyl, 2-methylphenyl and benzene rings are oriented with dihedral angles of 59.8 (2), 25.2 (2) and 45.6 (2)°, respectively, with respect to the 3-methyl-1H-pyrazole ring. Molecules are linked by intermolecular C– H···π interactions to contribute to the stabilization of the molecular packing. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions and report that the most important contributions for the crystal packing are from H···H (49.8%) and H···C/C···H (27.6%) and H···Cl/Cl···H (10.4%) interactions.

___

  • [1] F. Şen, “4-(3-metil-3-fenilsiklobütil)-2-(2-(piridin-4-ylmetilen)hidrazinil) tiyazol’un sentezi, karakterizasyonu, kristalografik yapısı ve Hirshfeld yüzeyinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, s. 1, ss. 157–168, 2018.
  • [2] M. R. Yadav, P. Murumkar, and R. Ghuge, Vicinal Diaryl Substituted Heterocycles, 1st ed., Oxford, UK: Elsevier, 2018, pp. 1–20.
  • [3] E. Banoglu, E. Celikoglu, S. Volker, A. Olgac, J. Gerstmeier, U. Garscha, B. Caliskan, U. S. Schubert, A. Carotti, A. Macchiarulo, and O. Werz, “4, 5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP),” European Journal of Medicinal Chemistry, vol. 113, pp. 1–10, 2016.
  • [4] B. Caliskan, S. Luderer, Y. Ozkan, O. Werz and E. Banoglu, “Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 5021–5033, 2011.
  • [5] Y. Dundar, S. Unlu, E. Banoglu, A. Entrena, G. Costantino, M. T. Nunez, F. Ledo, M. F. Sahin, and N. Noyanalpan, “Synthesis and biological evaluation of 4,5-diphenyloxazolonederivatives on route towards selective COX-2 inhibitors,” European Journal of Medicinal Chemistry, vol. 44, pp. 4785–4785, 2009.
  • [6] G. Eren, S. Unlu, M. T. Nunez, L. Labeaga, F. Ledo, A. Entrena, E. Banoglu, G. Costantino, and M. F. Sahin, “Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors,” Bioorg. Med. Chem., vol. 18, no. 17, pp. 6367–6376, 2010.
  • [7] B. C. Ergun, M. T. Nunez, L. Labeaga, F. Ledo, J. Darlington, G. Bain, B. Cakir, and E. Banoglu, “Synthesis of 1,5-diarylpyrazol-3-propanoic acids towards inhibition of cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4 formation,” Arzneimittel-forschung, vol. 60, no. 8, 497–505, 2010.
  • [8] U. Garscha, S. Voelker, S. Pace, J. Gerstmeier, B. Emini, S. Liening, A. Rossi, C. Weinigel, S. Rummler, U. S. Schubert, G. K. Scriba, E. Celikoglu, B. Caliskan, E. Banoglu, L. Sautebin, and O. Werz, “BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly,” Biochemical Pharmacology, vol. 119, no. 17–26, 2016.
  • [9] S. Levent, B. Caliskan, M. Ciftci, Y. Ozkan, I. Yenicesu, H. Unver, and E. Banoglu, “Pyrazole derivatives as inhibitors of arachidonic acid-induced platelet aggregation,” European Journal of Medicinal Chemistry, vol. 64, pp. 42–53, 2013.
  • [10] S. C. Pirol, B. Caliskan, I. Durmaz, R. Atalay, and E. Banoglu, “Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines,” European Journal of Medicinal Chemistry, vol. 87, pp. 140–149, 2014.
  • [11] S. Unlu, E. Banoglu, S. Ito, T. Niiya, G. Eren, B. Okcelik, and M. F. Sahin, “Synthesis, characterization and preliminary screening of regioisomeric 1-(3-pyridazinyl)-3-arylpyrazole and 1-(3-pyridazinyl)-5-arylpyrazole derivatives towards cyclooxygenase inhibition,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 22, no. 3, pp. 351–361, 2007.
  • [12] Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2007.
  • [13] G. M. Sheldrick, “A short history of SHELX,” Acta Cryst., vol. A64, pp. 112–122, 2008.
  • [14] G. M. Sheldrick, SHELXL-2018, Universität of Göttingen, Germany, 2018.
  • [15] L. J. Farrugia, “WinGX and ORTEP for Windows: an update,” Journal of Applied Crystallography, vol. 45, pp. 849–854, 2012.
  • [16] A. L. Spek, “Structure validation in chemical crystallography,” Acta Cryst., vol. D65, pp. 148–155, 2009.
  • [17] A. Aydin, Z. Soyer, M. Akkurt, and O. Buyukgungor, “Crystal structure and theoretical study of N,N-di[(5-chloro-2-oxo-2,3-dihydrobenzo[d]oxazole-3-yl)methyl]ethanamine,” Universal Journal of Physics and Application, vol. 11, no. 2, pp. 57–61, 2017.
  • [18] A. Aydin, M. Akkurt, M. Sukuroglu, and O. Buyukgungor, “Crystal structure of 4-(4-chlorophenyl)-6-(morpholin-4-yl)pyridazin-3(2H)-one,” Acta Cryst., vol. E71, pp. 944–946, 2015.
  • [19] S. K. Singh, A. Kumar, A. Vats, K. S. Bisht, V. S Parmar, and W. Errington, “5-Cyanomethyl-3-(4-methylphenyl)-1-phenylpyrazole,” Acta Cryst., vol. C51, pp. 2404-2406, 1995.
  • [20] H. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theoretica Chimica Acta, vol. 44, pp. 129–138, 1977.
  • [21] M. A Spackman, and D. Jayatilaka, “Hirshfeld surface analysis,” Crystal Engineering Communication, vol. 11, no.1, pp. 19–32, 2009.
  • [22] M. J. Turner, J. J. MacKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, Crystal Explorer17.5, University of Western Australia: Perth, Australia, 2017.
  • [23] A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, and C. C. Wilson, “Comparing entire crystal structures: Structural genetic fingerprinting,” Crystal Engineering Communication, vol. 9, no. 8, pp. 648–652, 2007.
  • [24] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, and B. Kahr, “Hirshfeld surfaces identify inadequacies in computation of intermolecular interactions in crystals: Pentamorphic 1,8-dihydroxyanthraquinone,” Crystal Growth & Design, vol. 8, no. 12, pp. 4517–4525, 2008.
  • [25] M. Spackman, and J. J. McKinnona, “Fingerprinting intermolecular interactions in molecular crystals,” Crystal Engineering Communication, vol. 4, pp. 378–392, 2002.
  • [26] S. Uzun, ve Z. Demircioğlu, “Bis[2-(metilamino)troponato]bakır(II) molekülünün yapısal ve elektronik özelliklerinin deneysel ve kuramsal analizleri,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 15, s. 1, ss. 9–22, 2020.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü