İyonlaştırıcı Radyasyonun Hücresel ve Moleküler Düzeydeki Etkileri

Hastalıkların erken tanı ve tedavisinde, iyonize radyasyon içeren görüntüleme yöntemleri önemli rol oynarlar. Tanı ve tedavide, hastaya uygulanacak radyasyon dozunun mümkün olduğunca az tutulması ve radyasyondan koruyucu önlemler alınmasına rağmen hastada radyasyon hasarı oluşma olasılığı bulunmaktadır. Bu nedenle düşük ve/veya yüksek doz radyasyon uygulamaları, hücrede biyokimyasal ve moleküler sinyal yolaklarını aktive ederek, hücresel düzeyde etkiler oluşturmaktadır. Günümüzde radyasyon içeren uygulamaların sıklığı ve teknik parametrelerin yüksek değerlerde kullanılmasıyla hasta dozları ve buna bağlı doku hasarları görülme olasılığı giderek artmaktadır. Radyasyon hasarı ile ilgili çalışmalarda rapor edilen hücresel mekanizmaların başında, apoptozis ve hücre içi reaktif oksijen türleri (Reactive Oxygen Species, ROS) oluşumu gelmektedir. Apoptozis, radyoterapi uygulamalarında tümörü yok etmede hedeflenen bir sonuç iken tanısal amaçlı düşük doz uygulamalarda doku hasarını arttırıcı istenmeyen bir sonuçtur. Tanı ve tedavi amacıyla kullanılan radyasyonun, farklı dokular üzerinde erken ve geç etkileri bulunmaktadır. Düşük doz iyonize radyasyonun hücresel düzeyde etkileri, hangi moleküller ve/veya sinyal ileti yolakları üzerinden oluştuğu konusunda çok sayıda araştırma olmasına rağmen henüz tam olarak açıklanamamıştır. Radyasyon hasarlarına ait moleküler düzeyde yapılan çalışmalar, oluşabilecek hasarların erken düzeyde belirlenmesi ve sonrasında önleyici tedavilerin planlanabilmesi açısından çok önemlidir. Bu derleme, radyasyonun hücrede farklı sinyal ileti yolakları ve moleküller üzerinden yaptığı etkileri güncel literatüre bağlı olarak değerlendirmeyi amaçlamıştır.

Cellular and Molecular Effects of Ionizing Radiation

The ionizing radiation imaging methods play an important role in the early diagnosis and treatment of diseases. In diagnosis and treatment, there is the possibility of radiation-induced damage to the patient despite the radiation dose being kept as low as possible and radiation precautions being taken. Therefore, low and/or high dose radiation applications have effects on cell by activating biochemical and molecular signaling pathways. The frequency of applications involving radiation and the use of technical parameters at higher values have led to increase in patient doses. In the studies reporting radiation damage, apoptosis and formation of intracellular reactive oxygen species (ROS) occur at the beginning of cellular mechanisms. Apoptosis is an intent to destroy the tumor in radiotherapy applications, but is undesirable in diagnostic low dose applications. Analysis methods at the molecular level are very important to explain the possible early and late effects of radiation on different tissues. Although there is a lot of research into the effects of low dose radiation on the cellular level, what molecules and / or signaling pathways are involved, it is not yet fully understood. In this review, the effects of radiation on different cellular mechanisms have been evaluated based on the current literature.

___

  • Cho YH, Kim SY, Woo HD, Kim YJ, Ha SW, Chung HW. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation. Int J Environ Res Public Health. 2015;12(12):15162-72.
  • Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal. 2018.
  • Shimura N, Kojima S. The Lowest Radiation Dose Having Molecular Changes in the Living Body. Dose-Response. 2018;16(2).
  • Bibault JE, Fumagalli I, Ferte C, Chargari C, Soria JC, Deutsch E. Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Rev. 2013;32(3-4):479-92.
  • Vandenhove H, Bradshaw C, Beresford NA, Vives IBJ, Real A, Garnier-Laplace J. ALLIANCE perspectives on integration of humans and the environment into the system of radiological protection. Ann ICRP. 2018:146645318756831.
  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, ve ark. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229-43.
  • Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, ve ark. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel). 2017;9(7).
  • Panganiban RA, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 2013;14(8):15931-58.
  • Tomita M, Maeda M. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. J Radiat Res. 2015;56(2):205-19.
  • Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, ve ark. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res. 2013;752(2):84-98.
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131-49.
  • Gregoire E, Roy L, Buard V, Delbos M, Durand V, Martin-Bodiot C, ve ark. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int J Radiat Biol. 2018;94(3):248-58.
  • Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose. DNA Repair (Amst). 2018;64:45-52.
  • Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, ve ark. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutat Res. 2013;756(1-2):174-83.
  • Manivannan B, Kuppusamy T, Venkatesan S, Perumal V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the gamma-H2AX assay: Relevance to radiation triage. Appl Radiat Isot. 2018;131:1-7.
  • Tewari S, Khan K, Husain N, Rastogi M, Mishra SP, Srivastav AK. Peripheral Blood Lymphocytes as In Vitro Model to Evaluate Genomic Instability Caused by Low Dose Radiation. Asian Pac J Cancer Prev. 2016;17(4):1773-7.
  • Bulat T, Keta O, Koricanac L, Zakula J, Petrovic I, Ristic-Fira A, ve ark. Radiation dose determines the method for quantification of DNA double strand breaks. An Acad Bras Cienc. 2016;88(1):127-36.
  • Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res. 2016;50(sup1):S64-S78.
  • Pannkuk EL, Laiakis EC, Singh VK, Fornace AJ. Lipidomic Signatures of Nonhuman Primates with Radiation-Induced Hematopoietic Syndrome. Sci Rep. 2017;7(1):9777.
  • Bhattacharya P, Shetake NG, Pandey BN, Kumar A. Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. Int J Radiat Biol. 2018:1-17.
  • Levine JH, Lin Y, Elowitz MB. Functional roles of pulsing in genetic circuits. Science. 2013;342(6163):1193-200.
  • Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. p53 dynamics control cell fate. Science. 2012;336(6087):1440-4.
  • Laiakis EC, Pannkuk EL, Chauthe SK, Wang YW, Lian M, Mak TD, ve ark. A Serum Small Molecule Biosignature of Radiation Exposure from Total Body Irradiated Patients. J Proteome Res. 2017;16(10):3805-15.
  • Prevo R, Pirovano G, Puliyadi R, Herbert KJ, Rodriguez-Berriguete G, O'Docherty A, et al. CDK1 inhibition sensitizes normal cells to DNA damage in a cell cycle dependent manner. Cell Cycle. 2018:1-11.
  • Bayin NS, Ma L, Thomas C, Baitalmal R, Sure A, Fansiwala K, ve ark. Patient-Specific Screening Using High-Grade Glioma Explants to Determine Potential Radiosensitization by a TGF-beta Small Molecule Inhibitor. Neoplasia. 2016;18(12):795-805.
  • Abtahi MM, Aghamiri MR, Yadolahi M, Mahmoodzade A. Biological Dosimetry Method: a Probable way for Measuring Percent Depth Dose. World Fam Med. 2018;16(1):193-7.
  • Lloyd DC, Edwards AA, Moquet JE, Guerrero-Carbajal YC. The role of cytogenetics in early triage of radiation casualties. Appl Radiat Isot. 2000;52(5):1107-12.
  • Tichy A, Kabacik S, O'Brien G, Pejchal J, Sinkorova Z, Kmochova A, ve ark. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. Plos One. 2018;13(2).
  • Vinnikov VA. Optimizing the Microscopy Time Schedule for Chromosomal Dosimetry of High-dose and Partial-body Irradiations. Genome Integr. 2017;8:3.
  • Little JB. Radiation carcinogenesis. Carcinogenesis. 2000;21(3):397-404.