TRİKLOSANIN FOTO-FENTON BENZERİ OKSİDASYON YÖNTEMİ İLE PARÇALANMASI

Triklosan, antibakteriyel kişisel bakım ürünlerinde en çok kullanılan aktif maddelerden biridir ve son yıllarda kullanımı artmıştır. Triklosanın sucul ortamda ki varlığı nedeniyle son yıllarda bu konularda çalışan araştırmacıların dikkatini çekmiştir. Bu çalışmada, triklosanın ileri oksidasyon yöntemlerinden fotoFenton yöntemi ile arıtılması ve yan ürünlerinin oluşumu araştırılmıştır. Triclosan, H2O2 ve Fe(III) derişimlerinin triklosan giderimine olan etkileri, Box-Behnken istatistiksel deney tasarımı ve yüzey cevabı analizi kullanılarak araştırılmıştır. Triklosan'ın tamamen parçalanması bir saatte gerçekleşirken tamamen mineralizasyonu gerçekleşmemiştir. 2,4-Diklorofenol ve 2,4,6Triklorofenol gibi bazı ara bileşiklerin oluştuğu gözlenmiştir. Foto-Fenton benzeri prosesinde, en yüksek triklosan giderimi (%97) için H22/Fe(III)/TCS oranının 50/5/5 olduğu saptanmıştır

DEGRADATION OF TRICLOSAN BY PHOTO-FENTON LIKE OXIDATION

Triclosan is one of the most used active ingredients in antibacterial personal care products and its usage increased in recent years. Triclosan has recently attracted the attention researchers from the fields of water treatment due to its existence in water environments. This study has been executed to investigate the removal of triclosan with Photo-Fenton like process and to observe by-product formation after oxidation. Effects of operational parameters namely the concentrations of Triclosan, HO2 and Fe(III) on oxidation of triclosan were investigated by using Box-Behnken statistical experiment design and the surface response analysis. Complete removal of triclosan was accomplished within a hour, however, complete mineralization was not occurred even within sixty minutes indicating formation of some intermediate compounds such as 2,4-Dichlorophenol H2O/Fe(III)/TCS ratio resulting by maximum triclosan removal (97%) was found to be 50/5/5, respectively. and 2,4,6-Trichlorophenol. Optimal

___

  • Bedoux, G., Roig, B., Thomas, O., Dupont, V., Le Bot, B. 2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the Pollution Res. Vol.19, page.1044-1065. Environ Science
  • Reiss, R., Mackay, N., Habig, C., Griffin, J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States, Environmental Toxicology page.2483-2492. Vol.21,
  • NICNAS (National Industrial Chemicals Notification and Assessment Scheme), Priority Existing Chemical Assessment Report No. 30 Triclosan, Australia, 2009.
  • Ferrer, I. Mezcua, M. Jose Gomez, M., Scientific Committee on Consumer Thurman, M.E., Aguera, A., Hernando, M.D., Fernandez-alba, A.R. 2004. Liquid
  • Products (SCCP), Opinion on: Triclosan Retrieved http://ec.europa.eu/health/ph_risk/comm chromatography/time-of-flight from spectrometric on Gautam, P., Carsella, J. S., Kinney, C. A. Presence and trasport of the antimicrobials triclocarban and triclosan in a wastewater dominated stream and freshwater Research, Vol.48, page.247-256. Water Perez, A.L., De Sylor, M.A. Slocombe, A.J. Lew, M.G. 2013. Triclosan occurrence in freshwater systems in the united states (1999-2012): Environmental
  • Chemistry, Vol.32 (7), page.1479-1487 and Tixier, C., Singer, H. P., Canonica, S.,
  • Stephan, R. 2002. Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used biocide laboratory studies, field measurements, and modeling, Environmental Technology, Vol.36, page.3482-3489. and Sanchez-Prado, L., Llompart, M., Lores,
  • M., Fernández-Alvarez, M., García-Jares, C., Cela, R. 2006. Further research on photo-SPME of triclosan, Analytical and Bioanalytical page.1548-1457. Vol.384,
  • Canosa, P., Morales, S., Rodríguez, I., Rubí, E., Cela, R., Gómez M. 2005.
  • Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine, Analytical and Bioanalytical Chemistry, Vol.383, page.1119-1126.
  • Latch, D.E., Packer, J.L., Arnold, W.A., McNeill, K. 2003. Photochemical conversion of triclosan to 2,8- dichlorodibenzo-p-dioxin in aqueous solution, Journal of Photochemistry and Photobiology A: Chemistry, Short
  • Communication, Vol.158, page.630-666. mass the analyses for elucidation of the photodegredation products of triclosan in wastewater samples, Rapid Communications in Mass Spectrometry, Vol.18, page.443-450. Esplugas, S., Yue, P.L., Pervez, M.I. 1994. Degradation photolytic oxidation, Water Research, Vol.28 (6), page.1323-1328. y
  • Masten, S.J., Davies, S.H.R. 1994. The use of ozonation to degrade organic contaminants
  • Env.Sci.Technol. Vol.28 (1), page.180A- A. wastewaters, Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1988. Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions, J. Phys.
  • Chem. Ref. Data, Vol.17(2), page.513-586. Legrini, O., Oliveros, E., Braun, A.M. Photochemical processes for water treatment, Chem. Rew. Vol.93 (2), page.671-698. Rule, K.L., Ebbett, V.R., Vikesland, P.J. 2005. Formation of chloroform and chlorinated organics by free- chlorine-mediated triclosan, Environ. Sci. Technol. Vol.39, page. 3176-3185. of
  • Boza, A., De la Cruz, Y., Jordan, G., Jauregui-Haza, Caraballo, optimization of a sustained-release matrix tablet of lobenzarit disodium, Drug Dev Ind Pharm. Vol.26, page.1303-1307. Aleman, A., I. Statistical
  • Box, G.E.P., Wilson, K.B. 1951. On the experimental attainment of optimum multifactorial conditions, Royal Statistics Society, Vol.13, page.1-12.
  • Singh, S.K., Dodge, J., Durrani, M.J., Khan, M.A. characterization of controlled release pellets coated with experimental latex: I. Anionic drug, Int J Pharm. Vol.125, page.243-255. and matrix tablets: Ragonese, R., Macka, M., Hughes, J., Petocz, P. 2002. The use of the Box
  • Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J Pharm Biomed Anal. Vol.27, page.995-1007.
  • Sastry, S.V., Khan, M.A. 1998. Aqueous based polymeric dispersion: Plackett
  • Burman design for screening of formulation gastrointestinal Pharm Acta Helv. Vol.73, page.105-112. system, therapeutic Hamed, E., Sakr, A. 2001. Application of multiple technique formulations design, J Control Release, Vol.73, page.329-338. optimization extended release
  • Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, Vol.58, page.1409-1414.
  • Charles, R.H., Kennneth, Jr V.T. 1999.
  • Fundamental concepts in the design of experiments, Oxford: University Press. Abbasi, A.F., Ahmad, M., Wasim, M. Optimization of concrete mix proportioning using reduced factorial experimental technique, ACI Mater J January-February, page.55-63. Glaze, W. H., Kang, J. & Lay, Y. 1995.
  • Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo- chloropropane in water by the combination of hydrogen peroxide and UV radiation, Industrial Engineering Chemistry Research, Vol. 34 (7), page. 2323.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi