Su Arıtımı İçin Etkili Bir Yöntem Olarak Kapasitif Deiyonizasyon Teknolojisinin Geliştirilmesi

Son yıllarda, kapasitif deiyonizasyon (KDI) adı verilen ve kapasitörler aracılığı ile sudan iyonların giderilmesi amacıyla geliştirilen bu teknoloji su arıtımı için kullanılan yeni teknolojiler arasında öne çıkmaktadır. Bu çalışma kapsamında sudan iyonların giderilmesi için süperkapasitör elektrotların kullanılması ve KDI teknolojisinin geliştirilmesine katkıda bulunulması hedeflenmiştir. Bu amaç doğrultusunda, grafen bazlı süperkapasitör elektrotlar geliştirilmiş ve deiyonizasyon için bu yeni malzemelerin kullanımı detaylı olarak araştırılmıştır. Elektrotların iyon tutma özellikleri farklı elektrik potansiyelleri ve debilerde analiz edilmiştir. Elde edilen sonuçlara göre 20mL/dakika akış hızı ve 2,0V elektrik potansiyel uygulanarak geliştirilen grafen elektrotlar ile 12,5µmol/g iyon adsorpsiyon kapasitesine ulaşılmıştır. Sonuçlarımız doğrultusunda ticari olarak satın alınabilen grafen malzemesi ile sudan iyonların giderilmesi amacı ile elektrot üretmenin mümkün olduğu görülmüştür.

Enhancing Capacitive Deionization Technology as an Effective Method for Water Treatment

In recent years, capacitive deionization (CDI) is reported as one of the emerging technologies developed with the purpose of water desalination. This work aims the use of supercapacitor electrodes for efficient removal of ions from water and contributes develepment of CDI technology. Towards the purpose, graphene based supercapacitor electrodes were developed and the use of these new materials for deionization purpose was explored in detail. The ion sorption behavior of the graphene electrodes developed from a commercially available graphene was analyzed at different electrical potentials and flow rates. Impact of operating parameters on sorption capacity was determined. At 20mL/min flow rate and 2.0V potential, the electrosorptive capacity of commercially available graphene electrodes could reach 12.5µmol/g. Our results showed that it is possible to develop supercapacitors from commercially available graphene material for the purpose of deionization.

___

  • [1] Myint M.T.Z, Al-Harthi S.H, Dutta J. 2014. Brackish Water Desalination by Capacitive Deionization Using Zinc Oxide Micro/nanostructures Grafted on Activated Carbon Cloth Electrodes, Desalination, Cilt. 344, s.236-242. DOI: 10.1016/j.desal.2014.03.037
  • [2] Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel P.M. 2013. Review on the Science and Technology of Water Desalination by Capacitive Deionization, Progress in Materials Science, Cilt. 58, s.1388-1442. DOI: 10.1016/j.pmatsci.2013.03.005
  • [3] Li H, Zou L, Pan L, Sun Z. 2010. Novel Graphene-Like Electrodes for Capacitive Deionization, Environmental Science & Technology, Cilt. 44, s.8692-8697. DOI: 10.1021/es101888j
  • [4] Anderson M.A, Cudero A.L, Palma J. 2010. Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete?, Electrochimica Acta, Cilt. 55, s.3845-3856. DOI: 10.1016/j.electacta.2010.02.012
  • [5] AlMarzooqi F.A, Al Ghaferi A.A, Saadat I, Hilal N. 2014. Application of Capacitive Deionisation in water desalination: A review, Desalination, Cilt. 342, s.3-15. DOI: 10.1016/j.desal.2014.02.031
  • [6] Bennett A. 2013. 50th Anniversary: Desalination: 50 Years of Progress, Filtration+Separation, Cilt. 50, s.32- 39. DOI: 10.1016/S0015- 1882(13)70128-9
  • [7] Subramani A, Jacangelo J.G. 2015. Emerging Desalination Technologies for Water Treatment: A Critical Review, Water Research, Cilt. 75, s.164-187. DOI: 10.1016/j.watres.2015.02.032
  • [8] Garcia-Quismondo E, Santos C, Lado J, Palma J, Anderson M.A. 2013. Optimizing the Energy Efficiency of Capacitive Deionization Reactors Working under Real-World Conditions, Environmental Science & Technology, Cilt. 47, s.11866-11872. DOI: 10.1021/es4021603
  • [9] Welgemoed T.J, Schutte C.F. 2005. Capacitive Deionization TechnologyTM: An alternative desalination solution, Desalination, Cilt. 183, s.327-340. DOI: 10.1016/j.desal.2005.02.054
  • [10] Li Z, Song B, Wu Z, Lin Z, Yao Y, Moon K.S, Wong C.P. 2014. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy, Cilt. 11, s.711-718. DOI: 10.1016/j.nanoen.2014.11.018
  • [11] Wang C, Song H, Zhang Q, Wang B, Li A. 2015. Parameter Optimization Based on Capacitive Deionization for Highly Efficient Desalination of Domestic Wastewater Biotreated Effluent and the Fouled Electrode Regeneration, Desalination, Cilt. 365, s.407-415. DOI: 10.1016/j.desal.2015.03.025
  • [12] Bai Y, Huang Z.H, Yu X.L, Kang F. 2014. Graphene Oxide-embedded Porous Carbon Nanofiber Webs by Electrospinning for Capacitive Deionization, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 444, s.153-158. DOI: 10.1016/j.colsurfa.2013.12.053
  • [13] Oren Y. 2008. Capacitive Deionization (CDI) for Desalination and Water Treatment -- Past, Present and Future (a Review), Desalination, Cilt. 228, s.10-29. DOI: 10.1016/j.desal.2007.08.005
  • [14] Conway B.E. 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum. DOI: 10.1007/978-1-4757-3058-6
  • [15] An K.H, Kim W.S, Park Y.S, Moon J.M, Bae D.J, Lim S.C, Lee Y.S, Lee Y.H. 2001. Electrochemical Properties of High-Power Supercapacitors Using SingleWalled Carbon Nanotube Electrodes, Advanced Functional Materials, Cilt. 11, s.387-392. DOI: 10.1002/1616- 3028(200110)11:53.3.CO;2-7
  • [16] Xia J, Chen F, Li J, Tao N. 2009. Measurement of the Quantum Capacitance of Graphene, Nature Nanotechnology, Cilt. 4, s.505-509. DOI: 10.1038/nnano.2009.177
  • [17] Li H, Lu T, Pan L, Zhang Y, Sun Z. 2009. Electrosorption behavior of graphene in NaCl solutions, Journal of Materials Chemistry, Cilt. 19, s.6773-6779. DOI: 10.1039/b907703k
  • [18] Li H, Zou L, Pan L, Sun Z. 2010. Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Seperation and Purification Technology, Cilt. 75, s.8-14. DOI: 10.1016/j.seppur.2010.07.003
  • [19] Wang Z, Dou B, Zheng L, Zhang G, Liu Z, Hao Z. 2012. Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, Cilt. 299, s.96-102. DOI: 10.1016/j.desal.2012.05.028
  • [20] Zhang D, Wen X, Shi L, Yan T, Zhang J. 2012. Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, Cilt. 4, s.5440-5446. DOI: 10.1039/C2NR31154B
  • [21] Lado J.J, Pérez-Roa R.E, Wouters J.J, Tejedor-Tejedor M.I, Anderson M.A. 2014. Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes, Separation and Purification Technology, Cilt. 133, s.236-245. DOI: 10.1016/j.seppur.2014.07.004
  • [22] Lado J.J, Pérez-Roa R.E, Wouters J.J, Tejedor-Tejedor M.I, Federspill C, Anderson M.A. 2015. Continuous cycling of an asymmetric capacitive deionization system: An evaluation of the electrode performance and stability, Journal of Environmental Chemical Engineering, Cilt. 3, s.2358-2367. DOI: 10.1016/j.jece.2015.08.025
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi