Tek ve Hibrit Olarak Tarımsal Atık Takviyelendirici Dolguların Polipropilenin Mekanik ve Isıl Özellikleri Üzerindeki Etkileri

Tarımsal hasatlardan ve budamadan sonra, Dünya'da milyarlarca ton tarımsal atık meydana gelir. Yalnızca az miktarda tarımsal atık gübre ve yakıt olarak kullanılmaktadır ve geri kalanı değerlendirilmemektedir. Kalan atık, sahada yakıldığında hava kirliliğine neden olabilir. Bu nedenle, bu büyük miktarda atık, polimerik kompozit ürünler üretmek için bir takviye veya dolgu malzemesi olarak kullanılabilir. Son on yılda, doğal elyaf/polimer kompozitlerin gelişimi çevre dostu karakteristikleri, düşük maliyet, düşük yoğunluk vb. nedeniyle zemin kaplaması, dış cephe kaplaması ve otomotiv iç parçaları gibi birçok uygulamada popülerlik kazanmıştır. Bu çalışmada, polipropilen (PP) esaslı kompozitlerde doğal takviyelendirici dolgu malzemeleri olarak pirinç kabuğu (RH) ve asma çubuğu’nun etkin kullanımı değerlendirilmiştir. Bu çalışmada, kompozitlerin mekanik (çekme ve eğilme dayanımları ve Young’s ve eğilme modülleri) ve termal (bozunma, erime ve kristalleşme sıcaklıkları vb.) özelliklerini incelemek için farklı ağırlık oranlarda RH (% 10,% 20 ve% 30) içeren RH-PP kompozitler ve hibrit RH-VS-PP matris kompozitler üretilmiştir. RH-PP ve RH-VS-PP kompozitler, saf PP'ye kıyasla çok daha iyi mekanik ve termal özellikler sergilemiştir. RH-PP ve RH-VS-PP kompozitleri, maksimum bozulma sıcaklığının daha yüksek bir bozunma sıcaklığına yer değiştirmesiyle termal stabilitesinde bir artış göstermiştir. RH-PP kompozitlere kıyasla, RH’ın VS’ye oranı 3: 7 olduğunda, RH-VS-PP kompozitleri daha iyi eğilme özellikleri sunmuştur.

The Effects of Agro-Waste Reinforcing Fillers as Single and Hybrid on Mechanical and Thermal Properties of Polypropylene

After agricultural harvests and pruning, billions of tons of agro-wastes are occurred on Earth. Only a small amount of the agro-waste is used as fertilizer and fuel and the rest is not evaluated. The remaining waste can cause air pollution if it is burned in the field. For this reason, this large amount of waste can be used as a reinforcement or filler to produce polymeric composite products. In last decade, the development of natural fiber/polymer composites has gained popularity in many applications such as decking, siding, and automotive indoor parts due to their environment friendly characteristics, low cost, low density etc. In this study, the effective utilization of rice husk (RH) and vine stem (VS) as natural reinforcing fillers in polypropylene (PP) based composites was evaluated. PP matrix composites containing different weight fraction of RH  (10%, 20% and 30 %) and hybrid RH-VS-PP matrix composites were manufactured to observe the mechanical (tensile and flexural strengths, and Young’s and flexural moduli) and thermal (degradation, melting, and crystallization temperatures etc.) properties of the composites. The RH-PP and RH-VS-PP composites exhibited much better mechanical and thermal properties compared to neat PP. RH-PP and RH-VS-PP composites showed an increase in thermal stability, which is indicated by shifting in maximum degradation temperature to a higher degradation temperature. Compared to RH-PP composites, the RH-VS-PP composites offered better flexural properties when the ratio of rice husk to vine stem was 3:7.

___

  • [1] Acar, H., Salan, T., Altuntaş, E., Alma, M. H., 2014. Yüksek Yoğunluklu Polietilen (YYPE) ve Atık Pirinç Saplarından Üretilen Kompozitlerin Bazı Mekanik ve Fiziksel Özelliklerinin Belirlenmesi. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, 22-24 Ekim, Isparta, 808-818.
  • [2] Bledzki, A.K., Gassan, J., 1999. Composites Reinforced with Cellulose Based Fibres, Progress in Polymer Science, Cilt. 24, s.221–274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5
  • [3] Bledzki, A.K., Sperber, V.E., Faruk, O. 2002. Natural and Wood Fibre Reinforcement in Polymers. Rapra Review Reports Volume 13 (8), UK, 144s.
  • [4] Bujjibabu, G., Chittaranjan Das, V., Ramakrishna, M., Nagarjuna, K. 2018. Mechanical and Water Absorption Behavior of Natural Fibers Reinforced Polypropylene Hybrid Composites, Materials Today: Proceedings, Cilt. 5, s. 12249–12256. https://doi.org/10.1016/j.matpr.2018.02.202
  • [5] Edhirej, A., Sapuan, S.M., Jawaid, M., Zahari, N.I. 2017. Cassava/Sugar Palm Fiber Reinforced Cassava Starch Hybrid Composites: Physical, Thermal and Structural Properties, International Journal of Biological Macromolecules, Cilt. 101, s. 75–83. Doi: 10.1016/j.ijbiomac.2017.03.045.
  • [6] Reis, K. C., Pereira, L., Melo, I. C. N. A., Marconcini, J. M., Trugilho, P. F., Tonoli, G. H. D. 2015. Particles of Coffee Wastes as Reinforcement in Polyhydroxybutyrate (PHB) Based Composites, Materials Research, Cilt. 18(3), s. 546-552. DOI: http://dx.doi.org/10.1590/1516-1439.318114
  • [7] Islam, Md. S., Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., Haafiz M.K.M. 2015. Physical, Mechanical and Biodegradable Properties of Kenaf/Coir Hybrid Fiber Reinforced Polymer Nanocomposites, Materials Today Communications, Cilt. 4, s. 69–76. https://doi.org/10.1016/j.mtcomm.2015.05.001
  • [8] El Messiry, M. El Deeb, R. 2016. Analysis of the Wheat Straw/Flax Fiber Reinforced Polymer Hybrid Composites, Journal of Applied Mechanical Engineering, 5:6, doi:10.4172/2168-9873.1000240
  • [9] Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S. 2018. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review, Journal of Cleaner Production, Cilt. 172, s. 566-581. DOI: 10.1016/j.jclepro.2017.10.101
  • [10] Rosa, S. M. L., Santos, E. F., Ferreira, C. A., Nachtigall, S.M.B. 2009. Studies on the Properties of Rice-Husk-Filled-PP Composites-Effect of Maleated PP, Materials Research, Cilt. 12 (3), s. 333-338. http://dx.doi.org/10.1590/S1516-14392009000300014
  • [11] Silva, R.V., Aquino, E.M.F. 2008. Curauá Fiber: A New Alternative to Polymeric Composites, Journal of Reinforced Plastics and Composites, Cilt. 27(1), s. 103-112. https://doi.org/10.1177/07316844080270010301
  • [12] Wang, W., Sain, M. Cooper, P.A. 2006. Study of Moisture Absorption in Natural Fiber Plastic Composites, Composites Science and Technology, Cilt. 66(3-4), s. 379-386. doi:10.1016/j.compscitech.2005.07.027
  • [13] Sanadi, A.R., Caulfield, D.F., Rowell. R.M. 1994. Reinforcing Polypropylene with Natural Fibers, Plastics Engineering, Cilt. 50(4), s. 27-28.
  • [14] Merajul, H.M., Hasan, M. 2018. Influence of Fiber Surface Treatment on Physicomechanical Properties of Betel Nut and Glass Fiber Reinforced Hybrid Polyethylene Composites, Advances in Materials and Processing Technologies, Cilt. 4 (3), s. 511-525. https://doi.org/10.1080/2374068X.2018.1465322
  • [15] Haque, M.M., Hasan, M. 2016. Mechanical Properties of Betel Nut and Glass Fibre Reinforced Hybrid Polyethylene Composites, International Journal of Automotive and Mechanical Engineering (IJAME), Cilt. 13 (3), s. 3763-3772. DOI: https://doi.org/10.15282/ijame.13.3.2016.18.0308
  • [16] Zainudin, E.S., Yan,L.H., Haniffah, W.H., Jawaid, M., Alothman, O.Y. 2014. Effect of Coir Fiber Loading on Mechanical and Morphological Properties of Oil Palm Fibers Reinforced Polypropylene Composites, Polymer Composites, Cilt. 35, s. 1418-1425. https://doi.org/10.1002/pc.22794
  • [17] Jawaid, M., Abdul Khalil, H.P.S. 2011. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review, Carbohydrate Polymers, Cilt. 86, s. 1-18. DOI: 10.1016/j.carbpol.2011.04.043
  • [18] Velmurugan, R., Manikandan, V. 2007. Mechanical Properties of Palmyra/Glass Fiber Hybrid Composites, Composites Part A Applied Science and Manufacturing, Cilt. 38(10), s. 2216-2226. DOI: 10.1016/j.compositesa.2007.06.006
  • [19] Faraz, M.I., Bhowmik, S., De Ruijter, C., Laoutid, F., Benedictus, R. , Dubois, Ph., Page, J.V.S., Jeson, S. 2010. Thermal, Morphological, and Mechanical Characterization of Novel Carbon Nanofiber‐Filled Bismaleimide Composites, Journal of Applied Polymer Science, Cilt. 117 (4), s. 2159-2167. https://doi.org/10.1002/app.31842
  • [20] Gopakumar, T.G., Page, D.J.Y.S. 2005. Compounding of Nanocomposites by Thermokinetic Mixing, Journal of Applied Polymer Science, Cilt. 96, s. 1557-1563. https://doi.org/10.1002/app.21597
  • [21] Deka, P.P., Samanta, S. 2015. Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites, International Journal of Materials and Metallurgical Engineering, Cilt. 9 (12), s. 1431-1436.
  • [22] Shumigin, D., Tarasova, E., Krumme, A., Meier, P. 2011. Rheological and Mechanical Properties of Poly(Lactic) Acid/Cellulose and LDPE/Cellulose Composites, Materials Science, Cilt. 17(1), s. 32-37. http://dx.doi.org/10.5755/j01.ms.17.1.245
  • [23] Prithivirajan, R., Jayabal, S., Bharathiraja, G. 2015. Bio-Based Composites From Waste Agricultural Residues: Mechanical and Morphological Properties, Cellulose Chemistry and Technology, Cilt. 49(1), s. 65-68.
  • [24] Phanindra Varma, D., Rama Krishna, T., Madhukiran, J., Lakshmi Poornima, C.H. 2015. Estimation of Mechanical Properties on Pineapple/Jute Hybrid Natural Fiber Composites, International Journal of Modern Engineering Research (IJMER), Cilt. 5(9), 43-47.
  • [25] Kaya, N., Atagür, M., Akyüz, O., Seki, Y., Sarıkanat, M., Sütçü, M., Seydibeyoğlu, M.O., Sever, K. 2017. Fabrication and Characterization of Olive Pomace Filled PP Composites, Composites Part B: Engineering, In press. https://doi.org/10.1016/j.compositesb.2017.08.017
  • [26] Palanivel, A., Veerabathiran, A., Duruvasalu, R., Iyyanar, S., Velumayil, R. 2017. Dynamic Mechanical Analysis and Crystalline Analysis of Hemp Fiber Reinforced Cellulose Filled Epoxy Composite, Polímeros, Cilt. 27(4), s. 309-319. DOI: 10.1590/0104-1428.00516
  • [27] Nagarajan, T.T., Suresh Babu, A., Palanivelu, K., Nayak, S.K. 2016. Mechanical and Thermal Properties of PALF Reinforced Epoxy Composites, Macromolecular Symposia, Cilt. 361, s. 57-63. https://doi.org/10.1002/masy.201400256
  • [28] Mohanty, S., Verma, S.K., Nayak, S.K. 2006. Dynamic Mechanical and Thermal Properties of MAPE Treated Jute/HDPE Composites, Composites Science and Technology, Cilt. 66, s. 538–547. DOI:10.1016/j.compscitech.2005.06.014
  • [29] Sever, K., Atagür M., Tunçalp, M., Altay, L., Seki Y., Sarıkanat, M. 2018. The Effect of Pumice Powder on Mechanical and Thermal Properties of Polypropylene, Journal of Thermoplastic Composite, In press. DOI: 10.1177/0892705718785692
  • [30] Idicula, M., Malhotra, S.K., Joseph, K., et al. 2005. Dynamic Mechanical Analysis of Randomly Oriented Intimately Mixed Short Banana/Sisal Hybrid Fibre Reinforced Polyester Composites, Composites Science and Technology, Cilt. 65, s. 1077–1087. https://doi.org/10.1016/j.compscitech.2004.10.023
  • [31] Romanzini, D., Ornaghi Jr, H.L., Amico, S.C., Zattera, A. J. 2012. Influence of Fiber Hybridization on the Dynamic Mechanical Properties of Glass/Ramie Fiber-Reinforced Polyester Composites, Journal of Reinforced Plastics and Composites, Cilt. 31(23), s. 1652–1661. DOI: 10.1177/0731684412459982
  • [32] Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H., Iemoto, Y. 2013. Thermal and Mechanical Properties of Polypropylene/Boron Nitride Composites, Energy Procedia, Cilt. 34, s. 808-817. doi: 10.1016/j.egypro.2013.06.817
  • [33] Selvakumar, V., Manoharan, N. 2014. Thermal Properties of Polypropylene/Montmorillonite Nanocomposites, Indian Journal of Science and Technology, Cilt. 7(S7), s. 136–139.
  • [34] Rosa, S.M.L., Nachtigall, S.M.B., Ferreira, C.A. 2009. Thermal and Dynamic-Mechanical Characterization of Rice-Husk Filled Polypropylene Composites, Macromolecular Research, Cilt. 17 (1), s. 8-13. https://doi.org/10.1007/BF03218594
  • [35] Mohamed, M. M. F., Mohamed, R., Azız, N. Z. A., 2016. Effect of Flexural and Thermal Properties of Sustainable Kenaf Fibre and Rice Husk with Mineral Filled PP Hybrid Composite, 63rd The IIER International Conference, 28 February, Phuket, Thailand, 25-29.