Stabilize Edilmiş İzmir Körfez Bölgesi Doğu Kıyı Şeridi Delta Zeminlerinin XRD ve SEM Analizleri

İzmir Körfezi'nin Batı sahilinde Meles çayı, Arap ve Manda dereleri tarafından taşınmış yaklaşık 3 milyon metreküp kirlenmiş alüvyonel zemin bulunmaktadır. Bu akarsular, 300.000 m2‘lik bir deltayı paylaşmaktadır. Deltada bulunan alüvyonlar 10 ila 15 m kalınlığında yüksek su içeriği ve düşük taşıma kapasitesine sahip katmanlardan oluşmaktadır. Meles deltası zaman içerisinde, büyük ölçekli konut inşaat projelerinin yapımının başladığı şehrin doğu sahil şeridi içinde kalmıştır. Geniş bir alan işgal eden ve rekreasyon çalışmaları için bile uygun olmayan bu yumuşak birikintilerinin maliyet etkin bir şekilde stabilizasyonuna ihtiyaç duyulmaktadır. Ayrıca, yolcu gemilerinin İzmir Limanı'na yaklaşma kanalını derinleştirmek için delta alanının deniz dibi kısmının da taranması planlanmaktadır. Tarama yolu ile toplanacak kirlenmiş deniz sedimentlerinin depolanması da ayrıca çevresel bir sorun oluşturmaktadır. Bu çalışmada, kireç, çimento ve bunların farklı oranlarda karışımları kullanılarak, Meles Deltası zeminlerinin stabilizasyonu hedeflenmiştir. Optimum katkı oranlarını belirlemek için tek eksenli basınç deneyleri yapılmıştır. Stabilizasyon ürünlerini ve mikro yapıdaki değişiklikleri gözlemlemek için stabilize edilmiş zemin numunelerinde X-ışını kırınım (XRD) testleri ve taramalı elektron mikroskobu görüntülemesi (SEM) yapılmıştır. X-ışını testlerinde değişik oranlarda stabilizasyon ürünleri tespit edilmiştir. Ayrıca, işlenmemiş ve stabilize edilmiş zemin örneklerinin SEM görüntülerinin karşılaştırılması, mikro yapıda kalsiyum alümina hidratlar ve kalsiyum silika hidratların varlığını ortaya koymuştur. 

SEM and XRD Analyses of Stabilized East Coastline Delta Soils of Izmir Bay Area

The gulf of İzmir contains 3 million cubic meters of polluted sediments carried by Meles, Arap and Manda rivers. These rivers share the same delta with a surface area approximately 300.000 m2, where 10 to 15 m thick sediment layers were deposited with high water content and low bearing capacity. The delta is now located along the east coastline of the city, where large scale residential building projects are under construction. These soil deposits that are unsuitable for the establishment of recreational facilities need to be stabilized in a cost-effective way. Besides, the sea bottom portion of the delta area will be dredged in order to deepen the approach channel of the cruise ships to the Izmir Port. The disposal of the contaminated sea sediments has also become an environmental concern. In this study, lime and cement and their mixtures with varying portions were considered as a stabilization agent for soft and contaminated sediments. Unconfined compression tests were conducted in order to determine the optimum additive percentages. X-ray diffraction tests (XRD) and scan electron microscope (SEM) imaging were performed on the stabilized soil specimens in order to observe the cementitious products and changes in the micro structure. In X-ray tests, cementitious by-products were detected in varying ratios. Also, the comparison of SEM images of untreated and stabilized soil specimens reveals the presence of calcium alumina hydrates and calcium silica hydrates in the micro structure. 

___

  • [1] Bruce, D.A., Bruce, M.E.C. and Dimillio, A.F., 1999. Dry mix methods: A brief overview of international practice. In Proceedings of International Conference on Dry Mix Methods for Deep Soil Stabilization, Balkema, Rotterdam (pp. 15-25).
  • [2] Timoney, M.J. and McCabe, B., 2012. Experiences of dry soil mixing in organic soils. Journal of Engineering Geology, 19(1), pp.7-80.
  • [3] Baran, T. ve Gülay, M. İzmir Meles Çayı Deltası Islah projesi, Türkiye İnşaat Mühendisliği XVII. Teknik Kongre ve Sergisi, TMMOB İnşaat Mühendisleri Odası, 14 - 17 Nisan 2004, İstanbul.
  • [4] Locat, J., Bérubé, M.A. and Choquette, M., 1990. Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal, 27(3), pp.294-304.
  • [5] Bell, F.G., 1996. Lime stabilization of clay minerals and soils. Engineering geology, 42(4), pp.223-237.
  • [6] Prusinski, J. and Bhattacharja, S., 1999. Effectiveness of Portland cement and lime in stabilizing clay soils. Transportation Research Record: Journal of the Transportation Research Board, (1652), pp.215-227.
  • [7] Esrig, M.I., Mac Kenna, P.E. and Forte, E.P., 2003. Ground stabilization in the United States by the Scandinavian lime cement dry mix process. In Grouting and Ground Treatment (pp. 501-514).
  • [8] Rajasekaran, G., 2005. Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. Ocean Engineering, 32(8-9), pp.1133-1159.
  • [9] Boardman, D.I., Glendinning, S. and Rogers, C.D.F., 2001. Development of stabilisation and solidification in lime–clay mixes. Geotechnique, 51(6), pp.533-543.
  • [10] Bergado, D.T., Anderson, L.R., Miura, N. and Balasubramaniam, A.S., 1996, January. Soft ground improvement in lowland and other environments. ASCE.
  • [11] Hebib, S. and Farrell, E.R., 2003. Some experiences on the stabilization of Irish peats. Canadian geotechnical journal, 40(1), pp.107-120.
  • [12] Hernandez-Martinez, F.G., & Al Tabbaa, A. (2005). Strength properties of stabilised peat. Proceedings of the International Conference on Deep Mixing – Best Practice and Recent Advances. Swedish Deep Stabilisation Research Centre, Stockholm, Sweden, (1), 69–78.
  • 13] Axelsson, K., Johansson, S.E. and Andersson, R., 2002. Stabilization of organic soils by cement and Puzzolanic reactions–feasibility study. Swedish Deep Stabilization Research Centre, Report, 3, pp.1-51.
  • [14] Wang, D., Abriak, N.E., Zentar, R. and Chen, W., 2013. Effect of lime treatment on geotechnical properties of Dunkirk sediments in France. Road Materials and Pavement Design, 14(3), pp.485-503.
  • [15] Grubb, D.G., Chrysochoou, M., Smith, C.J. and Malasavage, N.E., 2010. Stabilized dredged material. I: Parametric study. Journal of Geotechnical and Geoenvironmental Engineering, 136(8), pp.1011-1024.
  • [16] Miura, N., Horpibulsuk, S. and Nagaraj, T.S., 2001. Engineering behavior of cement stabilized clay at high water content. Soils and Foundations, 41(5), pp.33-45.
  • [17] Di Sante, M., Fratalocchi, E., Mazzieri, F. and Pasqualini, E., 2014. Time of reactions in a lime treated clayey soil and influence of curing conditions on its microstructure and behaviour. Applied Clay Science, 99, pp.100-109.
  • [18] Rajasekaran, G., Murali, K. and Srinivasaraghavan, R., 1997. Fabric and mineralogical studies on lime treated marine clays. Ocean engineering, 24(3), pp.227-234.
  • [19] Dash, S.K. and Hussain, M., 2011. Lime stabilization of soils: reappraisal. Journal of materials in civil engineering, 24(6), pp.707-714.
  • [20] Jose, B.T. (1989). A study of the physical and engineering behaviour of Cochin marine clays. Ph.D. Thesis, Cochin University of Science and Technology, Cochin.
  • [21] LADES, J. and GRIM, R., 1966. A quick test to determine lime requirements of lime stabilisation. Highway Research Record, 139, pp.61-72.
  • [22] Sarıavcı, C., (2016). Stabilizing Meles Delta Soils and Monitoring the Bonding Structures Using SEM and XRD Analyses. Dokuz Eylül University Graduate School of Natural and Applied Sciences. Master Thesis.
  • [23] Lasledj, A. and Al-Mukhtar, M., 2008, October. Effect of hydrated lime on the engineering behaviour and the microstructure of highly expansive clay. In The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics.