Alümina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin İncelenmesi

Polimer tabanlı kompozit malzemelerin yüksek dolgu oranlarındaki mekanik dayanımlarında meydana gelen belirgin kayıpların, karbon tabanlı bileşenlerin matrise ilavesi ile mekanik özelliklerin iyileştirilmesi günümüzde çalışılan konulardandır. Bu çalışmanın amacı, polipropilen (PP) matrise %40 ağırlıkça ilave edilen 20 mikron altı alüminyum oksit (Al2O3) parçacıklarının yarattığı mekanik etkilerin iyileştirilmesi için eklenen dolgu kompozisyonuna, %1, %3, %5 ve %7 oranında eklenen grafen nano plaklarının mekanik cevaplarını araştırmaktı. Yüksek hızlı termokinetik mikser de karıştırılarak elde edilen hibrit kompozitler, evrensel mekanik test cihazı ile çekme ve 3 nokta eğme testleri yapılarak mekanik özellikleri araştırılmıştır. Çekme numunelerinin kopma noktalarından alınan örnekler taramalı elektron mikroskobu altında incelenerek, alümina ve grafen parçacıklarının dağılımı gözlemlenmiştir. Elde edilen veriler ışığında, grafen parçacıkları ilave edilen PP tabanlı kompozitlerin çekme dayanımlarında %12 ve eğilme dayanımlarının %20 in üstün de bir iyileşme sağladığı görülmüştür. Grafen parçacıklarının PP içinde dağılımlarının homojen ve düzenli olduğu anlaşılmıştır.

Investigation of The Effect of Alumina-Graphene Hybrid Filler Mixtures on The Mechanical Properties of Polypropylene Matrix

Improvement of mechanical properties of polymer based composite materials with high fill ratio and mechanical properties is the main reason for the improvement of mechanical properties by addition of carbon based compounds to matrix. The aim of this study was to investigate the mechanical response of the graphene nanoparticles added at 1%, 3%, 5% and 7% to the added filler composition to improve the mechanical effects of the 20 micron aluminum oxide (Al2O3) particles added to the polypropylene (PP) matrix by 40% by weight. Hybrid composites were obtained by mixing in high speed thermo-kinetic mixer, tensile and 3 point bending tests were performed with universal mechanical test machine and their mechanical properties were investigated. The samples taken from the rupture points of the tensile specimens were examined under scanning electron microscope (SEM) and the distribution of alumina and graphene particles was observed. According to data, it was seen that tensile strength of composites were increased nearly 12% and flextural strength increased almost 20% with the graphene particles addition in to the PP matrix. The distribution of graphene particles in PP was homogenous and regular.

___

  • Rötting, O., Röpke, W., Becker, H., & Gärtner, C. (2002). Polymer microfabrication technologies. Microsystem Technologies, 8(1), 32-36. doi: 10.1007/s00542-002-0106-9
  • Mülhaupt, R. (2013). Green polymer chemistry and bio‐based plastics: dreams and reality. Macromolecular Chemistry and Physics, 214(2), 159- 174.
  • Mohanty, A. K., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.
  • Pukanszky, B. (1990). Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites, 21(3), 255-262.
  • Owen, N. A., Inderwildi, O. R., & King, D. A. (2010). The status of conventional world oil reserves—Hype or cause for concern? Energy policy, 38(8), 4743- 4749.
  • Masters, C. D., Root, D., & Attanasi, E. (1994). [15] 5 World Petroleum Assessment and Analysis. Paper presented at the 14th World Petroleum Congress.
  • Zhao, X., Zhang, Q., Chen, D., & Lu, P. (2010). Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules, 43(5), 2357-2363.
  • Yang, Y., Gupta, M. C., & Dudley, K. L. (2007). Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18(34), 345701.
  • Kim, K.-H., Ong, J. L., & Okuno, O. (2002). The effect of filler loading and morphology on the mechanical properties of contemporary composites. The Journal of prosthetic dentistry, 87(6), 642-649.
  • Li, Y., Swartz, M., Phillips, R., Moore, B., & Roberts, T. (1985). Materials science effect of filler content and size on properties of composites. Journal of Dental Research, 64(12), 1396-1403.
  • Wu, Y.-P., Jia, Q.-X., Yu, D.-S., & Zhang, L.-Q. (2004). Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polymer testing, 23(8), 903-909.
  • Zaini, M., Fuad, M. A., Ismail, Z., Mansor, M., & Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40(1), 51-55.
  • Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.
  • Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites: CRC press.
  • Ward, I. M., & Sweeney, J. (2012). Mechanical properties of solid polymers: John Wiley & Sons.
  • Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (Vol. 5): John Wiley & Sons NY.
  • Nielsen, L. E. (1969). Dynamic mechanical properties of filled polymers: MONSANTO RESEARCH CORP ST LOUIS MO.
  • Gojny, F. H., Wichmann, M. H., Fiedler, B., & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Composites Science and Technology, 65(15-16), 2300-2313.
  • Dannenberg, E. (1975). The effects of surface chemical interactions on the properties of fillerreinforced rubbers. Rubber Chemistry and Technology, 48(3), 410-444.
  • Cho, J., Joshi, M., & Sun, C. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Composites Science and Technology, 66(13), 1941- 1952.
  • Wang, M., Joseph, R., & Bonfield, W. (1998). Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials, 19(24), 2357-2366.
  • Ahmed, S., & Jones, F. (1990). A review of particulate reinforcement theories for polymer composites. Journal of Materials Science, 25(12), 4933-4942.
  • Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107-1110.
  • Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66(16), 3115-3125.
  • Haque, M. M., Hasan, M., Islam, M. S., & Ali, M. E. (2009). Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol, 100(20), 4903-4906.
  • Chatterjee, S., Nafezarefi, F., Tai, N., Schlagenhauf, L., Nüesch, F., & Chu, B. (2012). Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 50(15), 5380-5386.
  • Mittal, G., Dhand, V., Rhee, K. Y., Park, S.-J., & Lee, W. R. (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21, 11-25.
  • Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., . . . Sever, K. (2017). Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering. doi: https://doi.org/10.1016/j.compositesb.2017.08.017
  • Seki, Y., Avci, B., Uzun, S., Kaya, N., Atagur, M., Sever, K., & Sarikanat, M. The Using of Graphene Nano‐ Platelets for a Better through‐Plane Thermal Conductivity for Polypropylene. Polymer composites.
  • Sever, K., Atagur, M., Altay, L., Seki, Y., Uysalman, T., Sen, I., . . . Sarikanat, M. (2018). Effect of Diatomite Weight Fraction on Morphology, Thermal and Physical Properties of Diatomite Filled High Density Polyethylene Composites. Acta Physica Polonica, A., 134(1).
  • Özen, İ., İnceoǧlu, F., Acatay, K., & Menceloǧlu, Y. Z. (2012). Comparison of melt extrusion and thermokinetic mixing methods in poly (ethylene terephthalate)/montmorillonite nanocomposites. Polymer Engineering & Science, 52(7), 1537-1547.
  • Sahibi, İ., Yardımcıları, E., & Editörleri, A. http://dergipark. ulakbim. gov. tr/sdumuhtas/index e-ISSN: 1308-6693.
  • Standard, A. (2010). D638-10, 2010. Standard Test Methods for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA.
  • Li, Y., Zhang, Y., & Zhang, Y. (2004). Morphology and mechanical properties of HDPE/SRP/elastomer composites: effect of elastomer polarity. Polymer testing, 23(1), 83-90.
  • Guan, F.-L., Gui, C.-X., Zhang, H.-B., Jiang, Z.-G., Jiang, Y., & Yu, Z.-Z. (2016). Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide. Composites Part B: Engineering, 98, 134-140. doi: https://doi.org/10.1016/j.compositesb.2016.04.062