Modelling the Dynamic Adsorption of Methyl Violet from Aqueous Solution by Posidonia oceanica (L.) Dead Leaves

There are some endemic species which are considered to have vital importance for aquatic habitats in the Mediterranean Sea. One of these species is Posidonia oceanica(Linnaeus) Delile. Since this species return to aquatic environment from the land in its evolutionary history, it protects its terrestrial plant characteristics and therefore the P. oceanica leaves are shed seasonally. Unfortunately, the dead leaves accumulated on the beaches are burned in order to cope with this aesthetic problem. It has been suggested in the current study that the accumulated material could be used as an alternative sorbent for the dynamic removal of methyl violet in a fixed bed column system instead of being burned. Column studies were carried out at different bed height and different flow rates. The conditions consisted of 9 cm bed height and 5 mL/min flow rate was detected as the optimum conditions for methyl violet removal. Column performance was evaluated by using Thomas and Bed Depth Service Time Models. The parameters related to these models were calculated and compared to experimental data. As a result of promising adsorption capacities of this accumulated material, it might be a cost efficient adsorbent for the treatment of textile industry's effluents.

___

[1]Unuabonah, E.I., Olu-Owolabi, B.I., Fasuyi, E.I., Adebowale, K.O. 2010. Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent, Journal of Hazardous Materials, 179, 415-423. DOI:10.1016/j.jhazmat.2010.03.020

[2]Fu, Y., Viraraghavan, T. 2001. Fungal decolorization of dye wastewaters: a review, Bioresource Technology, 79, 251-262. DOI:10.1016/S0960-8524(01)00028-1

[3]Zhang, W., Yan, H., Li, H., Jiang, Z., Dong, L., Kan, X., Yang, H., Li,A., Cheng, R. 2011. Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies, Chemical Engineering Journal, 168, 1120-1127. DOI:10.1016/j.cej.2011.01.094

[4]Hamdaoui, O. 2006. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, Journal of Hazardous Materials, 135, 264-273. DOI:10.1016/j.jhazmat.2005.11.062

[5]Cengiz, S., Cavas, L. 2010. A Promising Evaluation Method for Dead Leaves of Posidonia oceanica(L.) in the Adsorption of MethylViolet, Marine Biotechnology, 12, 728-736. DOI: 10.1007/s10126-010-9260-8

[6]Saeed, A., Sharif, M., Iqbal, M. 2010. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption, Journal of Hazardous Materials, 179, 564-572. DOI: 10.1016/j.jhazmat.2010.03.041

[7]Chen, C.C., Liao, H.J., Cheng, C.Y., Yen, C.Y., Chung, Y.C. 2007. Biodegradation of crystal violet by Pseudomonas putida, Biotechnology Letters, 29, 391-396. DOI:10.1007/s10529-006-9265-6

[8]Song, J., Zou, W., Bian, Y., Su, F., Han, R. 2011. Adsorption characteristics of methylene blue by peanut husk in batch and column modes, Desalination, 265, 119-125. DOI:10.1016/j.desal.2010.07.041

[9]Mittal, A., Mittal, J., Malviya, A., Kaur, D., Gupta, V.K. 2010. Adsorption of hazardous dye crystal violet from wastewater by waste materials, Journal of Colloid and Interface Science, 343, 463-473. DOI:10.1016/j.jcis.2009.11.060

[10]Annadurai, G., Juang, R.S., Lee, D.J. 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, Journal of Hazardous Materials, 92, 263-274. DOI:10.1016/S0304-3894(02)00017-1

[11]Ponnusami, V., Rajan, K.S., Srivastava, S.N. 2010. Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders, Chemical Engineering Journal, 163, 236-242. DOI:10.1016/j.cej.2010.07.052

[12]Sonawane, G.H., Shrivastava, V.S. 2009. Kinetics of decolourization of malachite green from aqueous medium by maize cob (zea maize): an agricultural solid waste, Desalination, 247, 430-441. DOI:10.1016/j.desal.2009.01.006

[13]Cengiz, S., Cavas, L. 2008. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosavar. cylindracea, Bioresource Technology, 99, 2357-2363. DOI:10.1016/j.biortech.2007.05.011

[14]Marungrueng, K., Pavasant, P. 2006. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera, Journal of Environmental Management, 78, 268-274. DOI:10.1016/j.jenvman.2005.04.022

[15]Marungrueng, K., Pavasant, P. 2007. High performance biosorbent (Caulerpa lentillifera) for basic dye removal, Bioresource Technology, 98, 1567-1572. DOI:10.1016/j.biortech.2006.06.010

[16]Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., Marhaba, T.F. 2006. Biosorptionof Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresource Technology, 97, 2321-2329. DOI:10.1016/j.biortech.2005.10.032

[17]Dural, U., Cavas, L., Katsaros, F., Papageorgiou, S. 2011. Methylene blue adsorption on the activated carbon prepared from Posidonia oceanica(L.) dead leaves: Kinetics and equilibrium studies, Chemical Engineering Journal, 168, 77-85. DOI:10.1016/j.cej.2010.12.038

[18]Cavas, L., Karabay, Z., Alyuruk, H., Dogan, H., Demir, G.K. 2011. Thomas and artificial neural network models for the fixed bed adsorption of methylene blue by a beach waste Posidonia oceanica(L.) dead leaves, Chemical Engineering Journal, 171, 557-562. DOI:10.1016/j.cej.2011.04.030

[19]Ahmad, R. 2009. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP), Journal of Hazardous Materials, 171, 767-773. DOI:10.1016/j.jhazmat.2009.06.060

[20]Kannan, C., Buvaneswari, N., Palvannan, T. 2009. Removal of plant poisoning dyes by adsorption on tomato plant root and green carbon from aqueous solution and its recovery, Desalination, 249, 1132-1138. DOI:10.1016/j.desal.2009.06.042

[21]Au, W., Pathak, S., Collie, C.I., Hsu, T.S. 1978. Cytogenic toxicity of gentian violet (crystal violet) on mammalian cells in vitro, Mutation Research, 58, 269-276. DOI:10.1016/0165-1218(78)90019-8

[22]Kumar, R., Ahmad, R. 2011. Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), Desalination, 265, 112-118. DOI:10.1016/j.desal.2010.07.040

[23]Aksu, Z., Gönen, F. 2004. Biosorption of phenol immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochemistry, 39, 599-613. DOI:10.1016/S0032-9592(03)00132-8

[24]Aravindhan, R., Rao, J.R., Nair, B.U. 2009. Preparation and characterization of activated carbon from marine macro-algal biomass, Journal of Hazardous Materials, 162, 688-694. DOI:10.1016/j.jhazmat.2008.05.083

[25]Lodeiro, P., Herrero, R., Sastre de Vicente, M.E. 2006. Batch desorption studies and multiple sorption-regeneration cycles in a fixed bed column for Cd(II) elimination by protonated Sargassum muticum, Journal of Hazardous Materials, 137, 1649-1655. DOI:10.1016/j.jhazmat.2006.05.003

[26]Thomas, H,C. 1944. Heterogeneous ion exchange in flowing system, Journal of the American Chemical Society, 66, 1664-1666. DOI:10.1021/ja01238a017

[27]Markovska, L., Meshko, V., Noveski, V. 2001. Adsorption of Basic Dyes in a Fixed Bed Column, Korean Journal of Chemical Engineering, 18(2), 190-195. DOI:10.1007/BF02698458

[28]Hutchins, R.C. 1973. New method simplifies design of activated carbon systems, Chemical Engineering, 80, 133-136.

[29]Barron-Zambrano, J., Szygula, A., Ruiz, M., Sastre, A.M., Guibal, E. 2010. Biosorption of Reactive Black 5 from aqueous solutions by chitosan: Column studies, Journal of Environmental Management, 91, 2669-2675. DOI:10.1016/j.jenvman.2010.07.033

[30]Bohart, G.S., Adams, E.Q. 1920. Some aspects of the behavior of charcoal with respect to chlorine, Journal of the American Chemical Society, 42, 523-544. DOI:10.1021/ja01448a018

[31]Al-Degs, Y.S., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N. 2009. Adsorption characteristics of reactive dyes in columns of activated carbon, Journal of Hazardous Materials, 165, 944-949. DOI:10.1016/j.jhazmat.2008.10.081

[32]Walker, G.M., Weatherley, L.R. 1997. Adsorption of acid dyes on to granular activated carbon in fixed beds, Water Research, 31, 2093-2101. DOI:10.1016/S0043-1354(97)00039-0

[33]Hasan, S.H., Ranjan, D., Talat, M. 2010. Agro-industrial waste 'wheat bran' for the biosorptiveremediation of selenium through continuous up-flow fixed bed column, Journal of Hazardous Materials, 181, 1134-1142. DOI:10.1016/j.jhazmat.2010.05.133

[34]Ma, Y., Shi, F., Zheng, X., Ma, J., Gao, C. 2011. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): Batch and column studies, Journal of Hazardous Materials, 185, 1073-1080. DOI: 10.1016/j.jhazmat.2010.10.016

[35]Tor, A., Danaoglu, N., Arslan, G., Cengeloglu, Y. 2009. Removal of fluoride from water by using granular red mud: Batch and column studies, Journal of Hazardous Materials, 164, 271-278. DOI:10.1016/j.jhazmat.2008.08.011

[36]Futalan, C.M., Kan, C.C., Dalida, M.L., Pascua, C., Wan, M.W. 2011. Fixed bed column studies on the removal of copper using chitosan immobilized on bentonite, Carbohydrate Polymers, 83, 697-704. DOI:10.1016/j.carbpol.2010.08.043

[37]Suksabye, P., Thiravetyan, P., Nakbanpote, W. 2008. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith, Journal of Hazardous Materials, 160, 56-62. DOI:10.1016/j.jhazmat.2008.02.083

[38]Kavitha, D., Namasivayam, C. 2007. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresource Technology, 98, 14-21. DOI:10.1016/j.biortech.2005.12.008

[39]Ali, H., Muhammad, S.K. 2008. Biosorption of crystal violet from water on leaf biomass of Calotropis procera, Journal of Environmental Science and Technology, 1, 143-150. DOI:10.3923/jest.2008.143.150
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi