Zamana bağlı potansiyeli olan dikdörtgen bir zarın zorlanmış çapraz titreşimi için bir ters problem

Bu çalışmasa, dikdörtgen bir zarın zorlanmış enine titreşimi için hareket denkleminde ortaya çıkan iki boyutlu bir dalga denklemi için başlangıç-sınır değer problemi ele alınmıştır. Verilmiş bir ek koşul  ile zamana bağlı katsayı belirlenmiştir ve yeteri kadar küçük zaman değerleri için varlık ve teklik teoremi ispatlanmıştır. Ayrıca, koşullu kararlılığın karakterizasyonu verilmiş ve ters problemin sayısal çözümü sonlu farklar yöntemi kullanılarak incelenmiştir.

An inverse problem for the forced transverse vibration of a rectangular membrane with time dependent potential

In this paper, an initial-boundary value problem for a two-dimensional wave equation which arises in the equation of motion for the forced transverse vibration of a rectangular membrane is considered. Giving an additional condition, a time-dependent coefficient is determined and existence and uniqueness theorem for small times is proved. Moreover, characterization of the conditional stability is given and numerical solution of the inverse problem investigated by using finite difference method.

___

  • Rao S.S. 2007. Vibration of continuous systems. John Wiley & Sons, 744 pp.
  • Zachmanoglou E. C., Thoe D. W. 1986. Introduction to partial differential equations with applications. Courier Corporation, 417pp.
  • Aliev, Z. S., Mehraliev, Y.T. 2014. An inverse boundary value problem for a second-order hyperbolic equation with nonclassical boundary conditions: Doklady Mathematics, vol. 90, issue. 1, pp. 513-517. DOI: 10.1134/S1064562414050135
  • Aliyev, S.J., Aliyeva, A.G. 2017. The study of multidimensional mixed problem for one class of third order semilinear psevdohyperbolic equations: European Journal of Pure and Applied Mathematics, vol. 10, issue. 5, pp. 1078-1091.
  • Dehghan M., Mohebbi A. 2008. The combination of collocation, finite difference, and multigrid methods for solution of the twodimensional wave equation: Numerical Methods for Partial Differential Equations: An International Journal, vol. 24, issue. 3, pp. 897-910. DOI:10.1002/num.20295
  • Isakov V. 2006. Inverse problems for partial differential equations. Applied mathematical sciences,New York (NY): Springer, 358 pp.
  • Namazov G. K. 1984. Inverse Problems of the Theory of Equations of Mathematical Physics, Baku, Azerbaijan. (in Russian).
  • Prilepko A. I., Orlovsky D. G., Vasin I. A., 2000. Methods for solving inverse problems in mathematical physics. Vol. 231, Pure and AppliedMathematics, New York (NY): Marcel Dekker, 723 pp.
  • Romanov V.G. 1987. Inverse Problems of Mathematical Physics, VNU Science Press BV, Utrecht, Netherlands, 239pp.
  • Megraliev Y., Isgenderova Q.N. 2016. Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind, Problemy Fiziki, Matematiki Tekhniki(Problems of Physics, Mathematics and Technics) vol. 1 , pp. 42-47.
  • Aliyev S. J., Aliyeva A. G., Abdullayeva G. Z. 2018. The study of a mixed problem for one class of third order differential equations: Advances in Difference Equations, vol. 218, issue. 1. DOI:10.1186/s13662-018-1657-0
  • Romanov V.G. 1989. Local solvability of some multidimensional inverse problems for hyperbolic equations: Diff. Equ., vol. 25, no. 2, pp. 203-209.
  • Romanov V. G. 2018. Regularization of a Solution to the Cauchy Problem with Data on a Timelike Plane: Siberian Mathematical Journal, vol. 59, issue. 4, pp. 694-704. DOI: 10.1134/S0037446618040110
  • Yamamoto M. 1999. Uniqueness and stability in multidimensional hyperbolic inverse problems: Journal de mathématiques pures et appliquées, vol. 78, issue. 1, pp. 65-98. DOI: 10.1016/S0021-7824(99)80010-5
  • Imanuvilov O., Yu., Yamamoto M. 2001. Global uniqueness and stability in determining coefficients of wave equations: Communications in Partial Differential Equations, vol. 26, issue. 7-8, pp. 1409- 1425. DOI: 10.1081/PDE-100106139
  • Fatone L., Maponi P., Pignotti C., Zirilli F. 1997. An inverse problem for the two-dimensional wave equation in a stratified medium. In Inverse problems of wave propagation and diffraction,Springer, Berlin, Heidelberg. pp. 263-274.
  • Zhang G., Zhang Y. 1998. An iterative method for the inversion of the two-dimensional wave equation with a potential. Journal of Computational Physics, vol. 147, issue. 2, pp. 485-506. DOI: 10.1006/jcph.1998.9996
  • Shivanian E., Jafarabadi A. 2017. Numerical solution of twodimensional inverse force function in the wave equation with nonlocal boundary conditions: Inverse Problems in Science and Engineering, vol.25, issue. 12, pp. 1743-1767. DOİ:10.1080/17415977.2017.1289194
  • Han B., Fu H. S., Li Z. 2005. A homotopy method for the inversion of a two-dimensional acousticwave equation: Inverse Problems in Science and Engineering, vol. 13, issue. 4, pp. 411-431. DOI: 10.1080/17415970500126393
  • Kabanikhin S.I., Sabelfeld K.K., Novikov N.S., Shishlenin M.A. 2015. Numerical solution of the multidimensional GelfandLevitan equation: Journal of Inverse and Ill-Posed Problems, vol. 23, issue. 5, pp. 439-450. DOI: 10.1515/jiip-2014-0018
  • Kuliev M. A. 2002. A multidimensional inverse boundary value problem for a linear hyperbolicequation in a bounded domain: Differential Equations, vol.38, issue. 1, pp. 104-108. DOI: 10.1023/A:1014863828368
  • Khudaverdiyev K.I., Alieva A.G. 2010. On the global existence of solution to one-dimensional fourth order nonlinear Sobolev type equations: Appl. Math. Comput. Vol.217, issue. 1, pp. 347-354. DOI: 10.1016/j.amc.2010.05.067