β-L-Arabinokloraloz’un Mono- ve Di-Sülfonat Esterleri; 3-O-Korunmuş-5-Azido ve 5-O-Alkil Türevleri

Bu araştırmada, basit monosakkarit iskeleti üzerinde di-mesilat (metan sülfonat) ve di-tosilat ester grupları ile primer pozisyonda azido gruplarının bulunduğu mono-mesilat ve mono-tosilat yapılı organik türevlerin sentezi hedeflenmiştir. Bu hedef doğrultusunda, β-L-Arabinofuranoz başlangıç şekeri olarak seçilmiştir. Bu monosakkarit biriminin kloral ile derişik H2SO4 varlığındaki tepkimesi sonrası 1,2-O-(S)-Trikloroetiliden-β-L-arabinofuranoz elde edilmiştir. Daha sonra, trikloroetiliden asetal halkası ile korunmuş olan bu şekerin iskelet yapısı üzerinde öncelikle 3,5-Di-O-mesil (di-mesilat) ve 3,5-di-O-tosil (di-tosilat) gruplarının var olduğu ester türevleri sentezlenmiştir. Devamında, uygun reaksiyon koşullarında bu di-mesilat ve di-tosilat ester türevlerinden 5-Azido-3-O-mesil ve 5-azido-3-O-tosil türevleri elde edilmiştir. Ayrıca, 1,2-O-(S)-Trikloroetiliden-β-L-arabinofuranoz’un mono-tosilat ester türevi, ilgili 5-O-tosil-3-O-metil türevini elde etmek için gümüş oksit varlığında metil iyodür ile reaksiyona sokulmuştur. Elde edilen bu türev uygun reaksiyon koşullarında 5-Azido-3-O-metil türevine dönüştürülmüştür. İlaveten, 1,2-O-(S)-Trikloroetiliden-β-L-arabinofuranoz ilgili 5-O-tritil türevi elde etmek için tritil klorür ile reaksiyona sokulmuştur. 5-O-Tritil türevinin metilleme reaksiyonuyla 5-O-tiritil-3-O-metil arabinokloraloz sentezlenmiştir. Böylelikle, 5-O-Tosil ve 5-O-tiritil türevlerinde, karbohidrat iskelet biriminin sekonder hidroksil grubu metil grubu ile korunmuştur. Sentezlenen tüm yeni moleküller spektroskopik teknikler (IR, NMR ve Kütle) kullanılarak yapısal olarak karakterize edilmiştir.

Mono- and Di-Sulfonate Esters of -L-Arabinochloralose; 3-O-Protected-5-Azido and 5-O-Alkyl Derivatives

In this research, it was aimed to synthesize the organic compounds containing di-mesylate (methane sulfonate) and di-tosylate ester groups on the simple monosaccharide skeleton and mono-mesylate and mono-tosylate organic derivatives including azido groups in the primer position. In this target, β-L-arabinofuranose was chosen as the starting sugar. After the reaction of this monosaccharide unit with chloral in the presence of concentrated H2SO4, 1,2-O-(S)-trichloroethylidene-β-L-arabinofuranose was firstly obtained. The ester derivatives, 3,5-di-O-mesyl (di-mesylate) and 3,5-di-O-tosyl (di-tosylate), were then synthesized on this sugar skeleton protected with trichloroethylidene acetal ring. 5-Azido-3-O-mesyl and 5-azido-3-O-tosyl derivatives of these di-mesylate and di-tosylate ester derivatives were subsequently obtained under appropriate reaction conditions. Furthermore, the mono-tosylate ester derivative of 1,2-O-(S)-Trichloroethylidene-β-L-arabinofuranose was reacted with methyl iodide in the presence of silver oxide to obtain the corresponding 5-O-tosil-3-O-methyl derivative. This obtained derivative was converted to the 5-Azido-3-O-methyl derivative under suitable reaction conditions. In addition, the 1,2-O-(S)-Trichloroethylidene-β-L-arabinofuranose was reacted with trityl chloride to produce the corresponding 5-O-trityl derivative. The 5-O-Trityl-3-O-methyl arabinochloralose was synthesized by the methylation reaction of 5-O-trityl derivative. Thus, the secondary hydroxyl group of the carbohydrate skeleton unit is protected by methyl group in the 5-O-tosyl and 5-O-trityl derivatives. All newly synthesized molecules were structurally characterized by using spectroscopic techniques (IR, NMR and Mass).

___

  • Griess, P. 1863-1864. On a New Class of Compounds in Which Nitrogen is Substituted for Hydrogen. Proceedings of the Royal Society of London, Cilt. 13, s. 375-384.
  • Scriven, E.F.V. 1984. Azides and Nitrenes: Reactivity and Utility. E-Book, Academic Press. Inc. Orlando and London, 542 pp
  • Scheinman, F. 1985. Azides and Nitrenes. Reactivity and utility. Edited by E.F.V Scriven. Book Reviews, Journal of Medicinal Chemistry, Cilt, 28 (5), s. 686. DOI: 10.1021/jm50001a026
  • Smith, A.S.; Brown, B.B. 1951. The Synthesis of Heterocyclic Compounds from Aryl Azides. I. Bromo and Nitro Carbazoles. Journal of the American Chemical Society, Cilt, 73 (6), s. 2435-2437. DOI: 10.1021/ja01150a008
  • Boyer, J.H.; Canter, F.C. 1954. Alkyl and Aryl Azides. Chemical Reviews, Cilt, 54 (1), s. 1-57. DOI: 10.1021/cr60167a001
  • Hassner, A.; Stern, M. 1986. Synthesis of Alkyl Azides with a Polymeric Reagents. Angewandte Chemmie, International Edition, Cilt, 25 (5 ), s. 478-479. DOI: 10.1002/anie.198604781 Scriven, E.F.V.; Turnbull, K. 1988. Azides: Their Preparation and Synthetic Uses. Chemical Reviews, Cilt, 88 (2), s. 297-368. DOI: 10.1021/cr00084a001
  • Brase, S.; Banert, K. 2010. Organic Azides: Synthesis and Applications. John Willey&Sons Ltd. Great Britain, 507 pp.
  • Binkley, R.W.; Binkley, E.R. 2014. Radical Reactions of Carbohydrates, Vol. II-Radical reactions in Carbohydrate Synthesis. Chapter 15-Azides and Azo Compounds, s. 323-335 http://www.carborad.com/Volume%20II/volumeII.html (Erişim Tarihi: 15.05.2017)
  • Yüceer, L. 1978. Galakto ve Glukokloralozlar. Bazı Tosil Türevlerinin Nükleofilik Sübstitüsyon Reaksiyonlarında Sterik ve Polar Etkenler. Doçentlik Tezi, 121 sayfa. İzmir.
  • Eric, F.; Scriven, V.; Turnbull, K. 1988. Azides: Their Preparation and Synthetic Uses. Chemical Reviews, Cilt, 88 (2), s. 297-368. DOI: 10.1021/cr00084a001
  • Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. 2005. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angewandte Chemistry International Edition, Cilt, 44, s. 5188-5240. DOI: 10.1002/anie.200400657
  • Joshi, S.M.; Cozar, A.; Gomez-Vallejo, V.; Koziorowski, J.; Llop, J.; Cossio, F. 2015. Synthesis of Radiolabeled Aryl Azide from Diazonium Salts: Experimental and Computational Result Permit the Identification of the Preferred Mechanism. Royal Society of Chemistry, Chemical Communication, Cilt 51, s. 8954-8957. DOI: 10.1039/C5CC01913C
  • Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.; Sinha, S.K.; Chatuverdi, V.; Tripathi, R.P. 2008. Preparation and Reactions of Sugar Azides with Alkynes: Synthesis of Sugar Triazoles as Antitubercular Agents. Carbohydrate Research, Cilt, 343, s. 1153-1162. DOI: https://doi.org/10.1016/j.carres.2008.02.013
  • Alper, P.B.; Hung, S.C.; Wong, C.H. 1996. Metal Catalyzed Diazo Transfer for the Synthesis of Azides from Amines. Tetrahedron Letters, Cilt, 37 (34), s. 6029-6032. DOI: https://doi.org/10.1016/0040-4039(96)01307-X
  • Malkinson, P.M.; Falconer, A.F.; Toth, I. 2000. Synthesis of C-Terminal Gylcopeptides from Resin via a Modified Staudinger Reaction. Journal of Organic Chemistry, Cilt, 65 (17), s. 5249-5252. DOI: 10.1021/jo000381z
  • Matsubara, K.; Mukaiyama, T. 1994. High-yielding Catalytic Synthesis of Gylcosyl Azides from Peracylated Sugars. Chemistry Letters, Cilt, 23 (2), s. 247-250. DOI: http://dx.doi.org/10.1246/cl.1994.247
  • Bianci, A.; Bernardi A. 2006. Traceless Staudinger Ligation of Gylcosyl Azides with Triaryl Phosphines: Stereoselective Synthesis of Glycosyl Amides. Journal of Organic Chemistry, Cilt 71 (12), s. 4565-4577. DOI: 10.1021/jo060409s
  • Xiao, C.; Zhao, C.; He, P.; Tang, Z.; Chen, X. and Jing, X. 2010. Facile Synthesis of Glycopolypeptides by Combination of Ring-opening Polymerization of an Alkyne-Substituted N-carboxyanhydride and Click “Glycosylation”. Macromolecular Rapid Communications, Cilt, 31, s. 991-997. DOI: 10.1002/marc.200900821
  • Moreno-Garcia, M.I.; Diaz-Perez, P.; Benito, M.J.; Mellet, O.C.; Defaye, J.; Fernandez, J.M.G. 2002. One-step Synthesis of Non-Anomeric Sugar Isothiocyanates from Sugar Azides. Carbohydrate Research, Cilt, 337, s. 2329-2323. DOI: https://doi.org/10.1016/S0008-6215(02)00273-2
  • Becer, C.R.; 2012. The Gylcopolymer Code: Synthesis of Glycopolymers and Multivalent Carbohydrate-lectin Interaction. Macromolecular Rapid Communications, Cilt, 33, s. 742-752. DOI: 10.1002/marc.201200055
  • Sabesan, S.; Neira, S. 1992. Synthesis of Glycosyl Phosphates and Azides. Carbohydrate Research, Cilt, 223, s. 169-185. DOI: https://doi.org/10.1016/0008-6215(92)80015-S
  • Yenil, N.; Ay, E.; Ay, K.; Oskay, M.; Maddaluno, J. 2010. Sythesis and Antimicrobial Activities of Two Novel Amino Sugars Derived from Chloraloses. CArbohdrate Research, Cilt, 345 (11), s. 1617-1621. DOI: https://doi.org/10.1016/j.carres.2010.03.043
  • Wang, J.; Chang, C.W.T. 2012. Systematic Synthesis of Amino Sugars and Their Stereoselective Glycosylation. Glycobiology and Drug Design, ACS Symposium Series, e-Book, Cilt, 1102, Chapter 10, s. 265-286. DOI: 10.1021/bk-2012-1102.ch010
  • Ricci, A. 2008. Amino Group Chemistry: from Synthesis to the Life Science. Willey-VCH Verlag GmbH&Co. s. 257-300, Germany,
  • Anıl, H.; Yüceer, L. 1983. Effects of the Trichloromethyl Group in Displacement Reactions of Some 3-O-Tosyl-1,2-O-trichloroethylidene-α-D-galacto- and -Gluco-furanose Derivatives. Carbohydrate Research, Cilt, 123(2), s. 315-319. DOI: https://doi.org/10.1016/0008-6215(83)88486-9
  • Yenil, N.; 2009. Furanoz Türevi Aminoşekerlerden Yeni Sülfa İlaçlarının Sentezi ve Antimikrobiyal Aktiviteleri. Tübitak Proje Raporu, 106T410, 185 sayfa. Manisa.
  • Kuypens, J.M.H. 1995. A New Photochemical Method for Surface Modification of Medical-grade Polyurethane Biomaterials to Improve Blood Compatibility. University of Limburg, BIOmaterials and Polymer Research Institute, Thesis, 101 pp. Eindhoven.
  • Gritsan, N.P.; Koshkin, A.A.; Denisov, A.Y.; Markushin, Y.Y, Cherepanov, E.V.; Lebedev, A.V. 1997. Azidoethidium Derivatives as Photoaffinity Labels: Study of the Photochemistry of the Monoazidoethidium Derivatives in Water. Journal of Photochemistry and Photobiology B: Biology. Cilt, 37, s. 40-51. DOI: https://doi.org/10.1016/S1011-1344(96)07341-1
  • Nilov, D.I. 2011. Photoaffinity Labeling Strategies Using Purine Nucleic Acid Bases. Bowling Green State University, PhD Thesis, 113 pp. USA.
  • Drake, R.R.; Evans, R.K.; Wolf, M.J.; Haley, B.E. 1989. Synthesis and Properties of 5-Azido-UDP-Glucose. Development of Photoaffinity Probes for Nucleotide Diphosphate Sugar Binding Sites. Journal of Biological Chemistry, Cilt, 264 (20), s. 11928-11933.
  • Bulut, A. The Synthesis of Some Stable Photosensitizers and their Photochemical Analysis. 1998, Ege University, Graduate School of Natural and Applied Sciences, PhD Thesis, 102 pp. İzmir.
  • Sun, K.M.; Freiser-Reid, B. 1982. Annulated Sugars: The 1,2-O-Isopropylidene Ring as a Stereo-, Regio-, and Chemo-controlling Agent. Journal of American Chemical Society, Cilt, 104(1), s. 367-369. DOI: 10.1021/ja00365a100
  • Özgener, H.; Yüceer, L. 2002. 2-Dichloromethyl-1,3-dioxolan-2-yl-ortho-esters. A Potential Protecting Group for Sugar Derivatives. Journal of Carbohydrate Chemistry, Cilt, 21(6), s. 559-567. DOI: http://dx.doi.org/10.1081/CAR-120016854
  • Vatéle, J.M.; Hannesian, S. 1996. Design and Reactivity of Organic Functional Groups-preparation and Nucleophilic Displacement Reactions of Imidazole-1-sulfonates (Imidazylates). Tetrahedron, Cilt, 52(32), s. 10557-10568. DOI: https://doi.org/10.1016/0040-4020(96)00586-8
  • Nadkami, S.; Williams, N.R. 1965. Displacement Reactions of Galactose 6-Sulphonate Derivatives. Journal of Chemical Society, s. 3496-3498
  • Forsen, S. 1965. Trichloroethylidene Derivatives of D-Glucose. Acta Chemica Scandinavica, Cilt (19), s. 359-369.
  • Seçen, S. Amino Şeker Türevlerinin Sentezi. 2005, Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 44 sayfa, Manisa. (5,6-Diazido-5,6-dideoksi-1,2-O-izopropiliden-α-D-glukofuranoz; 5,6-O-Ditosil-1,2-O-izopropiliden-α-D-glukofuranoz’un (2 g, 0.00536 mol) kuru DMF (30 ml) içindeki çözeltisine NaN3 (1.043 g, 0.16 mol) eklenir. Reaksiyon karışımı 90 0C de 3 saat karıştırıldıktan sonra sonlandırılır. DMF evapore edilerek konsantre reaksiyon çözeltisi buz-su karışımına dökülür. Organik madde CH2Cl2 ile ekstre edilir, Na2SO4 ile kurutulur ve CH2Cl2: Aseton (10:1) çözgen sistemi ile kolon kromatografisine tabi tutularak metanolden kristallendirilir (0.98 g; %76). Erime noktası: 109-110 0C. IR cm-1 (KBr): 3454 -OH, 2995-2932 alifatik C-H bağları, 2129 ve 2112 -N3; 1H-NMR (CDCl3 δ ppm): 5.92 (d, 1H, J1,2=3.6, H-1), 4.51 (d, 1H, J2,3=0, H-2), 4.34 (d, 1H, H-3) 4.13 ( ddd, 1H, J5,6a=6.3, H-5), 4.02 (dd, 1H, J3,4=2.8, H-4), 3.61 (dd, 1H, J5,6b=6.8, H-6a), 3.54 (dd, 1H, J6a,6b=12.8, H-6b), 1.48 (s, 3H, CH3), 1.32 (s, 3H, CH3))
  • Koth, D.; Fiedler, A.; Scholz, S.; Gooschaldt, M. 2007. Synthesis of Different 3,5-Diazidofuranoses: A New and General Synthesis Pathway. Journal of Carbohydrate Chemistry, Cilt 26(5-6), s. 267-278. DOI: 10.1080/07328300701540175