Improvement of Stability of Hydrogen Peroxide using Ethylene Glycol

Yüksek oksitleyici özelliği ve çevre dostu bir reaktif olması nedeniyle, hidrojen peroksit (H2O2) siyanürlü atık çözeltilerin rehabilitasyonu ve metallerin cevher/konsantre/atıklardan liçi gibi çevresel ve hidrometalurjik uygulamalarda yaygın olarak kullanılmaktadır. Ancak H2O, özellikle bakır gibi metal iyonlarının varlığında katalitik bozunmaya uğramaktadır. Bu çalışmanın amacı, belirli katkı maddelerinin H2O2 kararlığına etkisinin araştırılmasıdır. Etilen glikol (2,5-20 mL/L) ve sitrik asit (4,8-80 mM) ilavesinin H2O2 kararlılığına etkisi bakır yokluğunda/ varlığında test edilmiştir. Zamana bağlı verilerin istatistiksel analizinde Ergun testi kullanılmıştır. Bakır yokluğunda etilen glikolün H2O kararlılığına bir etkisi gözlenmemesine karşın bakır varlığında %33'e varan iyileştirme sağlanmıştır. Sitrik asit ilavesi bakır varlığında H2O2 kararlığını olumsuz etkilemiştir.

Hidrojen Peroksitin Kararlılığının Etilen Glikol Kullanılarak İyileştirilmesi ve Ergun Testi ile Verilerin İstatistiksel Değerlendirmesi

Owing to its high oxidising power and environmentally friendly nature, hydrogen peroxide (H2O2) is commonly used in environmental and hydrometallurgical applications such as treatment of cyanidation effluents and leaching of metals from ores/concentrates/waste materials. However, H2O2 rapidly undergoes catalytic decomposition particularly in the presence of metal ions such as copper. The aim of this study is to investigate the influence of certain additives on the improvement of stability of H2O2.The influence of addition of ethylene glycol (2.5-20 mL/L) and citric acid (4.8-80 mM) on the stability of H2O2 in the absence/presence of copper was tested. The time-dependent data were statistically analysed using Ergun's test. No effect of ethylene glycol was observed on the stability of H2O2 in the absence of Cu while a substantial improvement (up to 33%) was noted in its presence. The addition of citric acid in the presence of copper negatively influenced the stability of H2O2.

___

  • [1] Jones, C.W. 1999. Applications of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry, UK, 274p.
  • [2] Habashi, F. 1999. Textbook of Hydrometallurgy, Metallurgie Extractive Quebec, 739 p.
  • [3] Marsden, J, House, I. 2006. The Chemistry of Gold Extraction. Society for Mining, Metallurgy, and Exploration, USA, 688 p.
  • [4] Gupta, C.K., Mukherjee, T.K. 1990. Hydrometallurgy in Extraction Processes Vol. I-II. CRC Press, Boston.
  • [5] Dreisinger, D. 2006. Copper Leaching from Primary Sulfides: Options for Biological and Chemical Extraction of Copper, Hydrometallurgy, Vol. 83, pp.10- 20.
  • [6] Baba, A.A., Ayinla, K.I., Adekola, F.A., Ghosh, M.K., Ayanda, O.S., Bale, R.B. 2012. A Review on Novel Techniques for Chalcopyrite Ore Processing. International Journal of Mining Engineering and Mineral Processing. Vol. 1, pp.1-16.
  • [7] Yazıcı, E.Y., Deveci, H. 2010. Factors Affecting Decomposition of Hydrogen Peroxide, XII International Mineral Processing Symposium (IMPS), 6-8 October, Cappdocia, Turkey, 609-616.
  • [8] Deveci, H., Yazıcı, E.Y., Aydın, U., Yazıcı, R., Akçil, A.U.2010. Extraction of Copper from Scrap TV Boards by Sulphuric Acid Leaching Under Oxidising Conditions, Going Green-Care Innovation, 8-11 November, Vienna, Austria, Paper no: 045.
  • [9] Yazici, E.Y. 2012. Recovery of Metals from E-wastes by Physical and Hydrometallurgical Processes, Karadeniz Technical University, PhD Thesis, 210p. (in Turkish).
  • [10] Kamberovic, Z., Korac, M., Vracar, S., Ranitovic, M. 2010. Preliminary Process Analysis and Development of Hydrometallurgical Process for the Recovery of Copper from Waste Printed Circuit Boards. Proceedings of Going Green-Care Innovation Conference, 8-11 November, Vienna, Austria.
  • [11] Evonik Industries. Hydrogen Peroxide Application Areas http://h2o2.evonik.com/product/ h2o2/en/applicationareas/pages/default.aspx, [Accessed: 09.03.2017]
  • [12] Mudder, T.I., Botz, M.M. 2001. The Chemistry and Treatment of Cyanidation Wastes, Mining Journal Books Ltd., London, 393 p.
  • [13] Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y., Deveci, H. 2012. Aqueous Metal Recovery Techniques from E-scrap: Hydrometallurgy in Recycling, Minerals Engineering, Vol. 25, pp.28-37.
  • [14] Bas, A.D., Yazici, E.Y., Deveci, H. 2012. Recovery of Silver from Xray Film Processing Effluents by Hydrogen Peroxide Treatment, Hydrometallurgy, Vol. 22, pp.121- 124.
  • [15] Evonik Industries. About Hydrogen Peroxide: Stability and Decomposition http://h2o2.evonik.com/product/ h2o2/en/about-hydrogenperoxide/basicinformation/stability-anddecomposition, [Accessed: 11.03.2017]
  • [16] Kim, E-H., Kim, Y-H., Chung, D-Y., Shin, Y-J., Yoo, J-H., Choi, C-S. 1996. Decomposition of Hydrogen Peroxide in the Aqueous Solution, J Korean Inst Chem Eng, Vol. 34, pp.249-252.
  • [17] Khalil, R.M. 1990. Kinetics of Decomposition of Hydrogen Peroxide over Different Electrodeposited Nickel Powder Catalysts, J of King Abdulaziz University, Vol. 2, pp.91-100.
  • [18] Kushibe, K. 1976. Method of Stabilizing Acid Aqueous Solutions of Hydrogen Peroxide, US Patent.
  • [19] Hopkins, Q.G., Browning, J.N. 1985. Stabilization of High Purity Hydrogen Peroxide, US Patent.
  • [20] Itani, K., Miyashiro, Y. 1992. Method for Stabilizing Acidic Aqueous Hydrogen Peroxide Solution Containing Copper, US Patent.
  • [21] Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C. 1989. Vogel's Textbook of Quantitative Chemical Analysis, John Wiley & Sons Inc., New York, 980p.
  • [22] Illustrated Glossary of Organic Chemistry http://web.chem.ucla.edu/~hardi ng/IGOC/E/ethylene_glycol.html20 17, [Accessed: 03.03.2016]
  • [23] Shabani, M.A., Irannajad, M., Azadmehr, A.R. 2012. Investigation on Leaching of Malachite by Citric Acid, International Journal of Minerals, Metallurgy, and Materials, Vol. 19, pp.782-786.
  • [24] Ergun, S. 1956. Application of Principle of Least Squares to Families of Straight Lines, Industrial & Engineering Chemistry, Vol. 48, pp.2063-2068.
  • [25] Powell, N., Jordan, M.A. 1997. Batch Leaching Data Analysis: Eradication of Time Dependency Prior to Statistical Analysis, Minerals Engineering, Vol. 10, pp.859-870.
  • [26] Mahajan, V., Misra, M, Zhong, K., Fuerstenau, M.C. 2007. Enhanced Leaching of Copper from Chalcopyrite in Hydrogen Peroxide-Glycol System, Minerals Engineering, Vol. 20, pp.670-674.
  • [27] Demir, F., Laçin, O., Dönmez, B. 2006. Leaching Kinetics of Calcined Magnesite in Citric Acid Solutions, Industrial & Engineering Chemistry Research, Vol. 45, pp.1307-1311.
  • [28] Hamada, Y.Z., Cox, R., Hamada, H. 2015. Cu2+-Citrate Dimer Complexes in Aqueous Solutions, Journal of Basic & Applied Sciences, Vol. 11, pp.583-589.
  • [29] Apelblat, A. 2014. Citric Acid, Springer, Switzerland, 357p.
  • [30] Patnaik, P. 2004. Dean's Analytical Chemistry Handbook, McGraw Hill, USA, 1280p.
  • [31] Amer, S. 2012. Treating citratechelated metals, Pollution Engineering, pp.27-28.
  • [32] Habbache, N., Alane, N., Djerad, S., Tifouti, L. 2009. Leaching of Copper Oxide with Different Acid Solutions, Chemical Engineering Journal, Vol. 152, pp.503-508.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi