Grafit Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu

Bu çalışmada, 0, 0.02, 0.05, 0.1 ve %0.15 ağırlık oranlarında grafit (Gr) ve ultra yüksek molekül ağırlıklı polietilen (UHMWPE) etanol içerisinde dağıtılarak grafit takviyeli UHMWPE nano-kompozit malzemeler üretilmiştir. UHMWPE ve Gr takviyeli kompozit malzemelerin termal performansları termogravimetrik analizler ile tespit edilmiştir. ULMWPE ve kompozit malzemelerin kimyasal yapısı Fourier Dönüşümlü Kızılötesi Spektroskopi ile incelenmiştir. Bunlara ek olarak; Gr katkısının polimerin çekme özellikleri, yüzey pürüzlülüğü, yoğunluk ve sertlik üzerine etkileri incelenmiştir. Bu sonuçlara göre, Gr eklendikçe kompozit malzemelerin maksimum bozunma sıcaklıkları fazla etkilenmemek ile birlikte elastisite modülü ve sertlik artmakta, yüzey pürüzlülüğü düşmektedir. Çekme dayanımı ise ağırlıkça %0.1 Gr katkı oranına kadar artmakta bu orandan sonra düşmektedir.

Development and Characterization of Graphite Nanoplate Reinforced Ultra High Molecular Weight Polyethylene Based Nano-Composite Materials

In this study, graphite filled ultra high molecular weight polyethylene nano-composite materials were produced by dispersing 0, 0.02, 0.05, 0.1 and 0.15wt % graphite (Gr) and ultra high molecular weight polyethylene(UHMWPE) in ethanol. The thermal performances of UHMWPE and Gr filled composite materials were determined by thermogravimetric analysis. The chemical structure of UHMWPE and composite materials was investigated by Fourier Transform Infrared Spectroscopy. Additionally; the effects of Gr on the tensile properties, surface roughness, density and hardness of polymer were investigated. According to these results, as the graphite is added, the maximum degradation temperatures of the composite materials are not affected much, and the modulus of elasticity and hardness increase and the surface roughness decreases. The tensile strength increased with the addition of Gr up to 0.1wt %, but decreased with the further increase of Gr weight fraction.

___

  • Ramazani, S. A. A., Saremi, M. G., Amoli, B. N., Izadi, H. 2012. Production and characterization of UHMWPE/fumed silica nanocomposites, Polymer Composites, Cilt: 33(10), s. 1858-1864. 10.1002/pc.22323.
  • Kavesh, S., Prevorsek, D. C. 1995. Ultra high strength, high modulus polyethylene spectra fibers and composites, International Journal of Polymeric Materials, Cilt: 30(1-2), s. 15-56. Doi 10.1080/00914039508031459.
  • Chanda, M. 2006. Plastics technology handbook, Taylor and Francis, Florida,
  • Li, C. S., Zhan, M. S., Huang, X. C., Zhou, H. 2012. Degradation behavior of ultra-high molecular weight polyethylene fibers under artificial accelerated weathering, Polymer Testing, Cilt: 31(7), s. 938-943. 10.1016/j.polymertesting.2012.06.009.
  • Kurtz, S. M. 2009. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices, Academic Press,
  • Amoli, B. M., Ramazani, S. A. A., Izadi, H. 2012. Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties, Journal of Applied Polymer Science, Cilt: 125, s. E453-E461. 10.1002/app.36368.
  • Davim, J. P., Marques, N. 2001. Evaluation of tribological behaviour of polymeric materials for hip prostheses application, Tribology Letters, Cilt: 11(2), s. 91-94. Doi 10.1023/A:1016607400392. [8] Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: Mechanical properties, Polymer Engineering and Science, Cilt: 40(8), s. 1906-1914. Doi 10.1002/Pen.11322.
  • Fengzhen Liu, Yunhua Wang, Keyi Li, Licheng Jiang, Xiumei Wang, Xin Shao, et al. 2015. Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites: Ball-Milling Preparation Mechanical Performance and Biocompatibility Effects, American Journal of Biomedical Science and Engineering, Cilt: 1(5), s. 51-57.
  • Samad, M. A., Sinha, S. K. 2011. Dry sliding and boundary lubrication performance of a UHMWPE/CNTs nanocomposite coating on steel substrates at elevated temperatures, Wear, Cilt: 270(5-6), s. 395-402. 10.1016/j.wear.2010.11.011.
  • Satyanarayana, N., Sinha, S. K., Ong, B. H. 2006. Tribology of a novel UHMWPE/PFPE dual-film coated onto Si surface, Sensors and Actuators aPhysical, Cilt: 128(1), s. 98-108. 10.1016/j.sna.2005.12.042.
  • Minn, M., Sinha, S. K. 2008. DLC and UHMWPE as hard/soft composite film on Si for improved tribological performance, Surface & Coatings Technology, Cilt: 202(15), s. 3698-3708. 10.1016/j.surfcoat.2008.01.012.
  • Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q. 2012. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63.
  • Chen, Y. F., Qi, Y. Y., Tai, Z. X., Yan, X. B., Zhu, F. L., Xue, Q. J. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026- 1033. 10.1016/j.eurpolymj.2012.03.011.
  • Xie, X. L., Tang, C. Y., Chan, K. Y. Y., Wu, X. C., Tsui, C. P., Cheung, C. Y. 2003. Wear performance of ultrahigh molecular weight polyethylene/quartz composites, Biomaterials, Cilt: 24(11), s. 1889- 1896. 10.1016/S0142-9612(02)00610-5.
  • Gong, G. F., Yang, H. Y., Fu, X. 2004. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear, Cilt: 256(1-2), s. 88-94. 10.1016/S0043-1648(03)00394-6.
  • Plumlee, K., Schwartz, C. J. 2009. Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles, Wear, Cilt: 267(5-8), s. 710-717. 10.1016/j.wear.2008.11.028.
  • Mahfuz, H., Adnan, A., Rangari, V. K., Jeelani, S. 2005. Manufacturing and characterization of carbon nanotube/polyethylene composites, International Journal of Nanoscience, Cilt: 4(01), s. 55-72.
  • Ruan, S., Gao, P., Yu, T. 2006. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes, Polymer, Cilt: 47(5), s. 1604- 1611.
  • Aoki, N., Akasaka, T., Watari, F., Yokoyama, A. 2007. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions, Dental Materials Journal, Cilt: 26(2), s. 178-185.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. 2011. Graphene based materials: Past, present and future, Progress in Materials Science, Cilt: 56(8), s. 1178-1271. 10.1016/j.pmatsci.2011.03.003.
  • Xiong, D. S., Lin, J. M., Fan, D. L. 2006. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy, Biomedical Materials, Cilt: 1(3), s. 175-179. 10.1088/1748-6041/1/3/013.
  • Xiong, D. S., Lin, J. M., Fan, D. L., Jin, Z. M. 2007. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication, Journal of Materials Science-Materials in Medicine, Cilt: 18(11), s. 2131-2135. 10.1007/s10856-007-3199-y.
  • Ren, X., Wang, X. Q., Sui, G., Zhong, W. H., Fuqua, M. A., Ulven, C. A. 2008. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion, Journal of Applied Polymer Science, Cilt: 107(5), s. 2837-2845. 10.1002/app.27354.
  • Xi, Y., Yamanaka, A., Bin, Y. Z., Matsuo, M. 2007. Electrical properties of segreated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites, Journal of Applied Polymer Science, Cilt: 105(5), s. 2868-2876. 10.1002/app.26282.
  • Mao, H. Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A. A., et al. 2013. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine, Chemical Reviews, Cilt: 113(5), s. 3407-3424. 10.1021/cr300335p.
  • Bo, X. J., Zhou, M., Guo, L. P. 2017. Electrochemical sensors and biosensors based on less aggregated graphene, Biosensors & Bioelectronics, Cilt: 89, s. 167-186. 10.1016/j.bios.2016.05.002.
  • Akhavan, O., Ghaderi, E., Rahighi, R. 2012. Toward Single-DNA Electrochemical Biosensing by Graphene Nanowalls, Acs Nano, Cilt: 6(4), s. 2904- 2916. 10.1021/nn300261t.
  • Rafiee, M. A., Rafiee, J., Wang, Z., Song, H. H., Yu, Z. Z., Koratkar, N. 2009. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, Acs Nano, Cilt: 3(12), s. 3884-3890. 10.1021/nn9010472.
  • Kim, H., Abdala, A. A., Macosko, C. W. 2010. Graphene/Polymer Nanocomposites, Macromolecules, Cilt: 43(16), s. 6515-6530. 10.1021/ma100572e.
  • Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S. 2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, Cilt: 49(1), s. 198-205. 10.1016/j.carbon.2010.09.004.
  • Veca, L. M., Meziani, M. J., Wang, W., Wang, X., Lu, F. S., Zhang, P. Y., et al. 2009. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity, Advanced Materials, Cilt: 21(20), s. 2088-2092. 10.1002/adma.200802317.
  • Pang, W. C., Ni, Z. F., Chen, G. M., Huang, G. D., Huang, H. D., Zhao, Y. W. 2015. Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites, Rsc Advances, Cilt: 5(77), s. 63063-63072. 10.1039/c5ra11826c.
  • Qiu, J. J., Wang, S. R. 2011. Enhancing Polymer Performance Through Graphene Sheets, Journal of Applied Polymer Science, Cilt: 119(6), s. 3670-3674. 10.1002/app.33068.
  • Yang, L., Yee, W. A., Phua, S. L., Kong, J., Ding, H., Cheah, J. W., et al. 2012. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, Rsc Advances, Cilt: 2(6), s. 2208-2210. 10.1039/C2RA00798C.
  • Bhattacharyya, A., Chen, S., Zhu, M. 2014. Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties, Express Polymer Letters, Cilt: 8(2), s. 74-84. 10.3144/expresspolymlett.2014.10.
  • Tai, Z. X., Chen, Y. F., An, Y. F., Yan, X. B., Xue, Q. J. 2012. Tribological Behavior of UHMWPE Reinforced with Graphene Oxide Nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63. 10.1007/s11249-012-9919-6.
  • Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., Xue, Q. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026- 1033. 10.1016/j.eurpolymj.2012.03.011.
  • Suñer, S., Joffe, R., Tipper, J., Emami, N. 2015. Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation, Composites Part B: Engineering, Cilt: 78, s. 185-191. 10.1016/j.compositesb.2015.03.075.
  • Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., Agarwal, A. 2014. Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites, Tribology International, Cilt: 70, s. 165-169. 10.1016/j.triboint.2013.10.012.
  • Berman, D., Erdemir, A., Sumant, A. V. 2014. Graphene: a new emerging lubricant, Materials Today, Cilt: 17(1), s. 31-42. 10.1016/j.mattod.2013.12.003
  • Chang, B. P., Akil, H. M., Nasir, R. M., and Nurdijati, S. 2013. Abrasive wear performance and antibacterial assessment of untreated and treated ZnO‐ reinforced polymer composite, Polymer Composites, 34(7), s. 1020-1032.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi