DİYATOMİTLERİN POLİMER KOMPOZİTLERDE KULLANIMI VE DİYATOMİT KATKILI EPOKSİ KOMPOZİTLERİN TERMAL ÖZELLİKLERİ

Bu çalışmada diyatom kabuklarının polimerik matrislerde takviye malzemesi olarak kullanımı amaçlanmış ve diyatom kabuk takviyeli epoksi kompozitlerin kürleşme ve termal özellikleri araştırılmıştır. Kütlece farklı diyatom kabuk katkılı epoksi matris kompozit numuneler üretilmiş ve hazırlanan kompozitlerin kürleşme davranışları Fourier dönüşümlü spektrometre (FTIR) ile belirlenmiştir. Taramalı elektron Mikroskobu (SEM) resimleri ve termogravimetrik analiz (TGA) sonucunda diyatomitlerin epoksi içerisinde homojen dağıldığı gözlenmiştir. Saf ve diyatomit katkılı numunelerin TGA bozunma eğrileri incelendiğinde % 10 ve % 50 kütle kaybında kütlece % 21 diyatomit katkılı numunelerin termal kararlığında bir miktar artış gözlenmiştir
Anahtar Kelimeler:

Diyatomit, Epoksi matris, TGA, FTIR

THE USE OF DIATOM FRUSTULES ON POLYMERİC COMPOSITES AND THERMAL BEHAVIOR OF FRUSTULES FILLED EPOXY

In this study, the use of diatom frustules in polymeric structures as a reinforcement element was aimed. Thermal and curing behavior of diatom frustules filled epoy composites were investigated. Diatom frustules with different weight percentage (0-20%) were used as filler in epoy matrix and the cure behavior of these composites was determined using Fourier transformed infrared spectroscopy (FTIR). Scanning electron microscope (SEM) images and Thermal Gravimetric Analyzer (TGA) curves showed that good dispersion of diatom frustules in epoxy matrices was provided. Thermal decomposition curves of neat and diatom frustules fiiled epoxy samples revealed a small increase in thermal decomposition temperature of neat epoxy at 10% and 50% weight loss with the addition of 21wt% diatom frustules.

___

  • Almqvist N., Delamo Y., Smith B. L., Thomson N. H., Bartholdson A., Lal R., Brzezinski M., Hansma P. K. (2001): “Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy”, Journal of Microscopy-Oxford, Cilt 202, No. 3, s. 518:532.
  • Drum R.W., Gordon R. (2003): “Star Trek replicators and diatom nanotechnology”, Trends in Biotechnology, Cilt 21, No. 8, s. 325:328.
  • Fraga F., Burgo S., Nunez E. R. (2001): “Curing kinetic of the epoxy system BADGE n=0/1,2 DCH by Fourier Transform Infrared Spectroscopy (FTIR)”, Journal of Applied Polymer Science, Cilt 82, No. 13, s. 3366:3372.
  • Fraga F., Vazquez E. C., Rodriguez-Nunez E., Martinez-Ageitos J. M. (2008): “Curing kinetics of the epoxy system diglycidyl ether of bisphenol A/isophoronediamine by Fourier transform infrared spectroscopy”, Polymers for Advanced Technologies, Cilt 19, No.11, s.1623:1628.
  • Gaddis C. S., Sandhage K. H. (2004): “Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features”, Journal of Materials Research, Cilt 19, No.9, s. 2541:2545.
  • Goren R., Baykara T., Marsoglu M., (2002): “Effects of purification and heat treatment on pore structure and composition of diatomite. British Ceramic Transactions”, Cilt 101, No.4, s. 177:180.
  • Hamm C. E., Merkel R., Springer O., Jurkojc P., Maier C., Prechtel K., Smetacek V. (2003): “Architecture and material properties of diatom shells provide effective mechanical protection”, Nature, Cilt 421, No.6925, s. 841:843.
  • Harada M., Morimoto M., Ochi M. (2003): “Influence of Network Chain Orientation on the Mechanical Property of Epoxy Resin Filled with Silica Particles”, Journal of Applied Polymer Science, Cilt 87, No.5, s. 787:794.
  • Losic D., Mitchell J. G.,Voelcker N. H. (2005): “Complex gold nanostructures derived by templating from diatom frustules”, Chemical Communications, No.39, s. 4905:4907.
  • Ramis X., Salla J. M., Mas C., Mantecon A., Serra A. (2004): “Kinetic study by FTIR, TMA, and DSC of the curing of a mixture of DGEBA resin and gamma-butyrolactone catalyzed by ytterbium triflate”, Journal of Applied Polymer Science, Cilt 92, No.1, s. 381:393.
  • Round F.E., Crawford R.M., Mann D.G. (1990): “The Diatoms. Biology and Morphology of the Genera”, Cambridge University Press, Cambridge.
  • Sandhage K. H., Allan S. M., Dickerson M. B., Gaddis C. S., Shian S., Weatherspoon M. R., Cai Y., Ahmad G., Haluska M. S., Snyder R. L., Unocic R. R., Zalar F. M., Zhang Y. S., Rapp R. A., Hildebrand M., Palenik B. P. (2005): “Merging biological self-assembly with synthetic chemical tailoring: The potential for 3-D genetically engineered micro/nano- devices (3-D GEMS) ”,International Journal of Applied Ceramic Technology, Cilt 2, No.4, s. 317:326.
  • Tasdemirci A., Yuksel S., Karsu D., Gulturk E., Hall I. W., Guden M. (2008): “Diatom frustule-filled epoxy: Experimental and numerical study of the quasi-static and high strain rate compression behavior”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Cilt 480, No.1-2, s. 373:382.
  • Vrieling E. G., Beelen T. P. M., Van Santen R. A., Gieskes,W. W. C. (1999): “Diatom silicon biomineralization as an inspirational source of new approaches to silica production. Journal of Biotechnology”, Cilt 70, No.1-3, s. 39:51.
  • Wee K. M., Rogers T. N., Altan B. S., Hackney S. A., Hamm C. (2005): “Engineering and medical applications of diatoms”, Journal of Nanoscience and Nanotechnology, Cilt 5, No.1, s. 88:91.
  • Werner D. (1977): “The Biology of Diatoms”, University of California Press, Berkeley, CA.
  • Yuan P., He H.P., Wu D.Q., Wang D.Q., Chen, L.J. (2004): “Characterization of diatomaceous silica by Raman spectroscopy”, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, Cilt 60, s. 2941:2945.
  • Zhao J. P., Gaddis C. S., Cai Y. Sandhage K. H. (2005): “Free-standing microscale structures of nanocrystalline zirconia with biologically replicable three-dimensional shapes”, Journal of Materials Research, Cilt 20, No.2, s. 282:287.