Comparative Assessment of Biogas Production Potential of the Most Abundant Agro-residues in Turkey

Recent energy policies promote energy generations from green resources to meet sustainabilitycriteria. Since Turkey is one of the largest agricultural producers globally, it has great biogasproduction potential. This study aims to evaluate the biomethane yields of the most abundant agroresidues in Turkey and to assess their potentials for contribution to biogas production. Within thisscope, sunflower heads, tea residues, cotton stalks, and crop residues; wheat, rye, and triticale strawswere collected from different regions of Turkey. Anaerobic batch digesters were conducted toinvestigate the biomethane production of the selected feedstock and operated for 30 days at 37°C.Each setup was conducted in triplicates and methane productions were monitored online. The mainmethane production route of the inoculum was determined as acetoclastic methanogenesis whileCloacimonetes, Firmicutes, and Bacteroidetes composed the core bacterial phyla. The greatest methaneyield was observed in the digesters operated with the wheat straw followed (164 NmL/gVSinfluent) bytriticale straw and sunflower head. The lowest yields were calculated for the digesters fed with thecotton stalks (71 NmL/gVSinfluent). To increase the biomethane potential yields in the anaerobicdigesters operated with agro-residues and to make the anaerobic digesters more feasible, operationalconditions should be optimized and physico-chemical and biological pre-treatment techniquesand/or bioaugmentation applications should be integrated into the systems.

Türkiye'deki Yaygın Tarımsal Atıkların Biyogaz Üretim Potansiyelinin Değerlendirmesi

Günümüzdeki enerji politikaları, sürdürülebilirlik kriterlerinin sağlanması yeşil kaynaklardan enerji üretimini teşvik etmektedir. Dünyadaki en büyük tarım üreticilerinden biri olan Türkiye, büyük bir biyogaz üretim potansiyeline sahiptir. Bu çalışmada, Türkiye'deki yaygın tarımsal atıkların biyometan verimlerinin incelenmesi ve biyogaz üretimine katkı potansiyellerini değerlendirilmesi amaçlamaktadır. Bu kapsamda, Türkiye'nin farklı bölgelerinden substrat olarak değerlendirilmek üzere tahıl atıklarından buğday, çavdar ve tritikale ile ayçiçeği başları, çay artıkları, pamuk sapları toplanmıştır. Seçilen atıkların biyometan üretiminin belirlenmesi için anaerobik çürütücüler kurularak, 30 gün süre ile 37 ° C'de kesikli olarak işletilmiştir. Çürütücü deney setleri üç tekrarlı olarak kurulmuş, metan üretimleri eş zamanlı kaydedilmiştir. Aşı çamurundaki metan üretiminin ağırlıkla asetoklastik metanojenik yolağı izlediği belirlenirken, bakteriyel komünite Cloacimonetes, Firmicutes ve Bacteroidetes türlerinden oluşmuştur. En yüksek metan verimi buğday samanı ile işletilen çürütücülerde gözlenirken (164 NmL/gUKMgiriş), bunu tritikale samanı ile ayçiçeği başları izlemiştir. En düşük biyometan verimi pamuk sapları ile işletilen çürütücülerde kaydedilmiştir (71 NmL/gUKMgiriş). Tarımsal atıklarla işletilen çürütücülerde biyometan potansiyel verimlerini artırmak ve anaerobik çürütücüleri daha uygulanabilir hale getirmek için, işletme koşulları optimize edilmeli ve fiziko-kimyasal ve biyolojik ön arıtma teknikleri ve / veya biyoaugmentasyon uygulamaları sistemlere entegre edilmelidir.

___

[1] Chatalova, L., Balmann, A. 2017. The hidden costs of renewables promotion: The case of crop-based biogas, Journal of Cleaner Production, 168, 893–903. doi:10.1016/j.jclepro.2017.09.031

[2] Meyer, A.K.P., Ehimen, E.A., Holm-Nielsen, J.B. 2018. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production, Biomass and Bioenergy, 111, 154–164. doi:10.1016/j.biombioe.2017.05.013

[3] MENR, 2014. Republic of Turkey Ministry of Energy and Natural Resources, National renewable energy action plan for Turkey. Ankara: NREAP.

[4] Lora Grando, R., de Souza Antune, A.M., da Fonseca, F.V., Sánchez, A., Barrena, R., Font, X. 2017. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development, Renewable & Sustainable Energy Reviews, 80, 44–53. doi:10.1016/j.rser.2017.05.079

[5] Scarlat, N., Dallemand, J.F., Fahl, F. 2018. Biogas: Developments and perspectives in Europe, Renewable Energy, 129, 457–472. doi:10.1016/j.renene.2018.03.006

[6] Curto, D., Martín, M. 2019. Renewable based biogas upgrading, Journal of Cleaner Production, 224, 50– 59. doi:10.1016/j.jclepro.2019.03.176

[7] Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization, Bioresource Technology, 100, 5478– 5484. doi:10.1016/j.biortech.2008.12.046

[8] Korberg, A.D., Skov, I.R., Mathiesen, B.V. 2020. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark, Energy, 199, 117426. doi:10.1016/j.energy.2020.117426

[9] Ozbayram, E.G., Kleinsteuber, S., Nikolausz, M., Ince, B., Ince, O. 2017. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw, Anaerobe, 46. doi:10.1016/j.anaerobe.2017.03.013

[10] Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S.S., Vijay, V., Kumar, V., Kumar Vijay, V., Pant, D. 2020. Valorization of agricultural waste for biogas based circular economy in India: A research outlook, Bioresource Technology, 304, 123036. doi:10.1016/j.biortech.2020.123036

[11] OECD, 2011. Evaluation of agricultural policy reforms in Turkey.

[12] TUIK 2019. Turkish Statistical Insititute (Available at:https://biruni.tuik.gov.tr/medas/?kn=92&locale =tr) (Accessed: 17.09.2020).

[13] FAO, 2016. BEFS Assessment for Turkey: Sustainable bioenergy options from crop and livestock residues.

[14] Koch, K., Hafner, S.D., Weinrich, S., Astals, S. 2019. Identification of Critical Problems in Biochemical Methane Potential (BMP) Tests From Methane Production Curves, Frontiers in Environmental Science, 7, 1–8. doi:10.3389/fenvs.2019.00178

[15] Filer, J., Ding, H.H., Chang, S. 2019. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research, Water, 11, 921. doi:10.3390/w11050921

[16] Sundberg, C., Al-Soud, W. a., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J., Karlsson, A. 2013. 454 Pyrosequencing Analyses of Bacterial and Archaeal Richness in 21 Full-Scale Biogas Digesters, FEMS Microbiology Ecology, 85, 612–626. doi:10.1111/1574-6941.12148

[17] Cho, K., Shin, S.G., Kim, W., Lee, J., Lee, C., Hwang, S. 2017. Microbial community shifts in a farm-scale anaerobic digester treating swine waste: Correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions, Science of the Total Environment, 601–602, 167–176. doi:10.1016/j.scitotenv.2017.05.188

[18] Kirkegaard, R.H., McIlroy, S.J., Kristensen, J.M., Nierychlo, M., Karst, S.M., Dueholm, M.S., Albertsen, M., Nielsen, P.H. 2017. The impact of immigration on microbial community composition in full-scale anaerobic digesters, Scientific Reports, 7, 1–11. doi:10.1038/s41598-017-09303-0

[19] Akyol, Ç., Ozbayram, E.G., Ince, O., Kleinsteuber, S., Ince, B. 2016. Anaerobic co-digestion of cow manure and barley: Effect of cow manure to barley ratio on methane production and digestion stability, Environmental Progress in Sustainable Energy, 35, 589–595. doi:10.1002/ep.12250

[20] Eckert, I.M.K., Littlefair, J.E., Zhang, G.K., Chain, F.J.J., Crease, T.J., Cristescu, M.E. 2018. Bioinformatics for Biomonitoring: Species Detection and Diversity Estimates Across Next-Generation Sequencing Platforms, Advances in Ecological Research, 59, 1– 32. doi:10.1016/bs.aecr.2018.06.002

[21] APHA/AWWA/WEF 2012. Standard methods for the examination of water and wastewater, Standard Methods, 541. doi:ISBN 9780875532356

[22] Ince, O., Akyol, Ç., Ozbayram, E.G., Tutal, B., Ince, B. 2020. Enhancing methane production from anaerobic co-digestion of cow manure and barley: Link between process parameters and microbial community dynamics, Environmental Progress in Sustainable Energy, 39. doi:10.1002/ep.13292

[23] Ozbayram, E.G., Kleinsteuber, S., Nikolausz, M., Ince, B., Ince, O. 2018. Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia, Engineering in Life Science, 18, 440–446. doi:10.1002/elsc.201700199

[24] 24. Yadav, D., Barbora, L., Rangan, L., Mahanta, P. Tea waste and food waste as a potential feedstock for biogas production, Environmental Progress in Sustainable Energy, 2016, 35, 1247–1253. doi:10.1002/ep.12337

[25] Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G., Chen, C. 2018. Enhancement of methane production from Cotton Stalk using different pretreatment techniques, Scientific Reports, 8, 1–9. doi:10.1038/s41598-018-21413-x

[26] Zhurka, M., Spyridonidis, A., Vasiliadou, I.A., Stamatelatou, K. 2020. Biogas production from sunflower head and stalk residues: Effect of alkaline pretreatment, Molecules, 25. doi:10.3390/molecules25010164

[27] Yi, J., Dong, B., Jin, J., Dai, X. 2014. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis, PLoS One, 9. doi:10.1371/journal.pone.0102548

[28] Liang, B., Wang, L.Y., Mbadinga, S.M., Liu, J.F., Yang, S.Z., Gu, J.D., Mu, B.Z. 2015. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation, AMB Express, 5. doi:10.1186/s13568-015-0117-4

[29] Williams, J., Williams, H., Dinsdale, R., Guwy, A., Esteves, S. 2013. Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management, Bioresource Technology, 140, 234–242. doi:10.1016/j.biortech.2013.04.089

[30] Khayum, N., Anbarasu, S., Murugan, S. 2018. Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure, Energy, 165, 760–768. doi:10.1016/j.energy.2018.09.163

[31] Manyuchi, M.M., Mbohwa, C., Muzenda, E. 2018. Biogas and Bio solids production from tea waste through anaerobic digestion, Proceedings of the International Conference on Industrial Engineering and Operations Management, 2519–2525

[32] Weide, T., Baquero, C.D., Schomaker, M., Brügging, E., Wetter, C. 2020. Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure), Biomass and Bioenergy, 132, 105442. doi:10.1016/j.biombioe.2019.105442

[33] Dell’Omo, P.P., Spena, V.A. 2020. Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw, Energy, 203, 117798, doi:10.1016/j.energy.2020.117798.

[34] Fjørtoft, K., Morken, J., Hanssen, J.F., Briseid, T. 2019. Pre-treatment methods for straw for farm-scale biogas plants, Biomass and Bioenergy, 124, 88–94, doi:10.1016/j.biombioe.2019.03.018

[35] Akyol, Ç., Ince, O., Bozan, M., Ozbayram, E.G., Ince, B. 2019. Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach, Industrial Crops and Products, 140. doi:10.1016/j.indcrop.2019.111659

[36] DBFZ, 2011. Assessment of actual framework conditions and potentials for Biogas investments in Turkey.

[37] Petersson, A., Thomsen, M.H., Hauggaard-Nielsen, H., Thomsen, A.B. 2007. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean, Biomass and Bioenergy, 31, 812–819. doi:10.1016/j.biombioe.2007.06.001
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi