C-MRC TABANLI KİPLEME ÇÖZ VE İLET PROTOKOLÜ İLE İKİ YÖNLÜ RÖLELİ KANALLARDA BİRLEŞİK AĞ-KANAL KODLAMASI

Sayısal aktarma tabanlı işbirlikli telsiz ağlarının sistem karmaşıklığını ve enerji sarfiyatını azaltmak için yapılan araştırma faaliyetleri rölenin aldığı işaretlerde kod çözme yerine kipleme çözme yaptığı kipleme çöz ve ilet tasarımını ortaya çıkarmıştır. Öte yandan işbirlikli en yüksek oranlı birleştirme (İEYOB), iletim verimini düşüren çevrimsel artıklık denetimi (ÇAD) kodlardan faydalanmaksızın sayısal aktarmada hata yayılımı ile mücadele etmede kullanılan yüksek performanslı düşük karmaşıklıklı önemli bir başka tekniktir. Bu çalışmada iki kullanıcının bir röle aracılığı ile veri alışverişi yaptığı iki yönlü röle kanalları için İEYOB tabanlı kipleme çöz ve ilet protokolünü önerilmektedir. İletim süresi, birinci ve ikinci fazların kullanıcıların kodlamasız veya konvolüsyonel kodlamalı verilerinin iletimine tahsis edildiği zamanda üç faza ayrılmıştır. Röle, demodülasyondan sonra bit düzeyinde XOR‟lanmış paketi üçüncü fazda kullanıcılara iletmektedir. Rayleigh sönümlemeli kanallardaki sayısal sonuçlar önerilen yaklaşımın tam çeşitleme seviyesi sağladığını göstermektedir

JOINT NETWORK-CHANNEL CODING WITH C-MRC BASED DEMODULATE AND FORWARD PROTOCOL IN TWO-WAY RELAY CHANNELS

Research activities to reduce the system complexity and energy consumption of digital relaying based cooperative wireless networks have yielded the demodulate-forward scheme where the relay performs demodulation, instead of decoding, on the received signals. On the other hand, cooperative maximal ratio combining (C-MRC) is another high-performance low-complexity technique used to combat error propagation in digital relaying without exploiting CRC codes which decreases the transmission efficiency. In this study, we propose a C-MRC based demodulate and forward protocol for two-way relay channels where two users exchange information via a relay. The transmission is divided into three phases in time where the first and second phases are allocated to the transmissions of uncoded or convolutionally encoded data of the users. After demodulation, the relay broadcasts the bit-wise XOR-ed packet to the users in the third phase. The numerical results for Rayleigh fading show that the proposed approach provides full diversity gain.

___

  • Chen D., Laneman J. N. (2006): “Modulation and Demodulation for Cooperative Diversity in Wireless Systems”, IEEE Transactions on Wireless Communications, Cilt 5, s. 1785-1794.
  • Divsalar D., Jin H., McEliece R. J. (1998): “Coding Theorems for „Turbo-Like‟ Codes”, Monticello, 36th Annual Allerton Conf. on Comm., Control, and Computing, s. 201-210.
  • Eckford A. W., Chu J., Adve R. (2006): “Low Complexity Cooperative Coding for Sensor Networks Using Rateless and LDGM Codes”, İstanbul, IEEE International Conference on Communications.
  • Eckford A. W. Adve R. (2006): “A Practical Scheme for Relaying in Sensor Networks Using Repeat-Accumulate Codes”, New Jersey, Conference on Information Sciences and Systems.
  • Eckford A. W., Chu J., Adve R. (2008): “Low Complexity and Fractional Coded Cooperation for Wireless Networks”, IEEE Transactions on Wireless Communications, Cilt 7, s. 1917- 1929.
  • Elfituri M., Hamouda W., Ghrayeb A. (2007): “Analysis of A Distributed Coded Cooperation Scheme for Multi-relay Channels”, Cairo, IEEE International Symposium on Signal Processing and Information Technology, s. 454-459.
  • Hunter T. E., Nosratinia A. (2006): “Diversity Through Coded Cooperation”, IEEE Transactions on Wireless Communications, Cilt 5, s. 283-289.
  • Ju M., Kim I. (2009): “ML Performance Analysis of the Decode-and-Forward Protocol in Cooperative Diversity Networks”, IEEE Transactions on Wireless Communications, Cilt 8, s. 3855-3867.
  • Laneman J. N., Tse D. N. C., Wornell G. W. (2004): “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behaviour”, IEEE Transactions on Information Theory, Cilt 50, s. 3062-3080.
  • Kim S., Mitran P., John C., Ghanadan R., Tarokh V. (2007): “Coded Bi-directional Relaying in Combat Scenarios”, Florida, IEEE Military Communications Conference, s. 1-7.
  • Larsson P., Johansson N., Sunell K. E. (2005): “Coded Bi-directional Relaying”, Stockholm, Scandinavian Workshop on Ad Hoc Networks, s. 851-855.
  • Lin S., Costello D. J. (2004): “Error Control Coding Fundamentals and Applications”, New Jersey, Pearson Educational International.
  • Liu X. ve Su W. (2007): “BER performance analysis of the optimum ML receiver for decode- and-forward cooperative protocol”, Honolulu, IEEE International Conference on Acoustics, Speech and Signal Processing, s. 485-488.
  • Oenning T. R., Moon J. (2001): “A Low Density Generator Matrix Interpretation of Parallel Concatenated Single Bit Parity Codes”, IEEE Trans. Magnetics, Cilt 37, s. 737-741.
  • Onat F. A, Adinoyi A., Fan Y., Yanıkomeroğlu H., Thompson J. S., Marsland I. D. (2008): “Threshold Selection for SNR-based Selective Digital Relaying in Cooperative Wireless Networks”, IEEE Transactions on Wireless Communications, Cilt 7, s. 4226-4237.
  • Özdemir Ö., Yılmaz A. Ö (2010): “ML Performance Analysis of Digital Relaying in Bi- directional Relay Channels”, Wireless Communications and Mobile Computing, Yayınlanmak üzere kabul edildi.
  • Proakis, J. G. (2000): “Digital Communications”, New York, McGraw-Hill.
  • Sendonaris A., Erkip E., Aazhang B. (2003): “User Cooperation Diversity Part I and Part II”, IEEE Transactions on Communications., Cilt 51, s. 1927-1948.
  • Su W. (2007): “Performance analysis for a suboptimum ML receiver in decode-and-forward communications”, Washington, IEEE Global Telecommunications Conference, s. 2962- 2966.
  • Wang T., Cano A., Giannakis G. B., Laneman, J. N. (2007): “High-Performance Cooperative Demodulation Communications, Cilt 55, s. 1427-1438.
  • Decode-and-Forward Relays”, IEEE Transactions on
  • Wang T., Giannakis G. B., Wang R. (2008): “Smart Regenerative Relays for Link-Adaptive Cooperative Communications”, IEEE Transactions on Communications, Cilt 56, s. 1950- 1960.