BSDF ÖLÇÜMLEMELERİNİN VE SUNUMLARININ İNCELENMESİ

Işık yansıması ve iletiminin doğru bir şekilde ölçümlenip sunulması malzemelerin yüksek doğrulukta görsel simülasyonu için çok önemlidir. Bu makalede, literatürdeki en son İki Yönlü Saçılım Dağılım Fonksiyonu (BSDF) ölçümlemeleri ve modelleri incelenmektedir. Literatürdeki en son BSDF modellerinin camlardan metallere, izotropikden anizotropiğe ve ışığı yeniden yönlendiren filmlere kadar bir çok yüzey tipi için genel bir çözüm önermedikleri gösterilmiştir. Bunun dışında, özellikle normal geliş yönü ve süpürme açıları gibi spesifik ölçümleme açılarında doğru ve yoğun BSDF ölçümlemesinin kolay olmadığı gösterilmiştir. Bu makalede, etkin BSDF ölçümlemesi ve sunumu için genel bir çözüm bulma problemine yönelinmiştir. Ayrıca, mevcut BSDF sunumlarının etkin olarak kullanımına müsaade etmeyen ana konular belirtilmiştir. Son olarak, BSDF literatüründe incelenmesi gereken açık araştırma konuları önerilmiştir

A SURVEY OF BSDF MEASUREMENTS AND REPRESENTATIONS

Measuring and representing light reflection and transmission accurately are core to high fidelity visual simulation of materials. In this paper, we analyze state-of-the-art Bidirectional measurements and models. We show that the most of the state-ofthe-art BSDF models do not suggest a general solution for any surface class, from glasses to metals, isotropic to anisotropic materials, and daylight redirecting films. Furthermore, it’s shown that an accurate and dense BSDF acquisition is not a trivial task at especially some specific measurement angles, such as normal incidence and grazing angles. In this paper, we address the problem of finding a general solution for efficient BSDF measurement and representation. We also outline the main issues that do not allow the effective use of current BSDF representations. Finally, we suggest open research issues that need to be investigated in BSDF literature

___

  • Papas, M., de Mesa, K., Jensen, H.W. A Physically-Based BSDF for Modeling the Appearance of Paper, Computer Graphics Forum, Vol. 33, No. 4, pp. 133–142. (Proc. Eurographics Symp. Rendering ’14). Matusik, W., Pfister, H., Brand, M., McMillan, L. 2003. A data-driven reflectance
  • Transactions on Graphics, Vol. 22, No. 3, pp. 759–769. (Proc. SIGGRAPH ’03). ACM Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M. 2007. BRDF acquisition with International Computer Vision, 1–8. on
  • Apian-Bennewitz, P. 2014. Building material examples (BME) BRDF and http://www.pab.eu/gonio- photometer/demodata/bme/ (Access Date: 15.11.2017).
  • Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T. Geometrical Considerations and Nomenclature for Reflectance. Final Report National Bureau of Standards, Washington, DC. Inst. for Basic Standards, National Bureau of Standards (US). Walter, B., Marschner, S.R., Li, H., Torrance, K.E. 2007. Microfacet models for refraction through rough Eurographics Rendering EGSR’07, 195–206. th on ser. Techniques,
  • Cook, R.L., Torrance, K.E. 1981. A reflectance model for computer graphics, Computer Graphics, Vol. , No. 3, pp. 307-316.
  • He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, comprehensive physical model for light reflection, Computer Graphics, Vol. 25, No. 4, pp. 175–186. (Proc. SIGGRAPH ’91). A Ward, G.J. 1992. Measuring and modeling anisotropic reflection,
  • Computer Graphics, Vol. 26, No. 2, pp. 265–272. (Proc. SIGGRAPH ’92). Lafortune, E.P., Foo, S.-C., Torrance, K.E., Nonlinear reflectance functions. SIGGRAPH ’97, 117–126. approximation of Ashikhmin, M., Shirley, P. 2000. An anisotropic Phong BRDF model,
  • Journal of Graphics Tools, Vol. 5, No. 2, pp. 25–32. Duer, A. 2005. On the Ward model for
  • Unpublished material. Edwards, D., Boulos, S., Johnson, J., Shirley, P., Ashikhmin, M., Stark, M., Wyman, C. 2006. The halfway vector disk for BRDF modeling,
  • ACM Transactions on Graphics, Vol. , No. 1, pp. 1–18. Ozturk, A., Kurt, M., Bilgili, A., Gungor, approximation of bidirectional reflectance distribution functions, Computers & Graphics, Vol. 32, No. , pp. 149–158. Linear Geisler-Moroder, D., Dür, A. 2010. A new ward BRDF model with bounded
  • Graphics Forum, Vol. 29, No. 4, pp. –1398. (Proc. Eurographics Symp. Rendering ’10). M., Kurt, Szirmay-Kalos, L.,
  • Krivanek, J. 2010. An anisotropic brdf model for fitting and monte carlo
  • Computer Graphics, Vol. 44, No. 1, pp. 1–15. SIGGRAPH Xu, K., Sun, W.-L., Dong, Z., Zhao, D.- Y., Wu, R.-D., Hu, S.-M. 2013.
  • Anisotropic spherical Gaussians. ACM Transactions on Graphics, Vol. , No. 6, pp. 209:1–209:11. (Proc. SIGGRAPH Asia’13). Dai, Q., Wang, J., Liu, Y., Snyder, J., Wu, E., Guo, B. 2009. The dual- microfacet model for capturing thin transparent slabs, Computer
  • Graphics Forum, Vol. 28, No. 7, pp. –1925. (Proc. Pacific Graphics ’09).
  • Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C. 2016. Multiple- scattering microfacet bsdfs with the smith model, ACM Transactions on Graphics, Vol. 35, No. 4, pp. :1–58:14. (Proc. SIGGRAPH ’16).
  • Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R. 2004. Efficient
  • BRDF importance sampling using a factored Transactions on Graphics, Vol. 23, No. 3, pp. 496–505. (Proc. SIGGRAPH ’04). ACM Öztürk, A., Kurt, M., Bilgili, A. 2010. A copula-based
  • Computer Graphics Forum, Vol. 29, No. 6, pp. 1795–1806. model,
  • Bilgili, A., Öztürk, A., Kurt, M. 2011.
  • A general BRDF representation based on tensor decomposition, Computer Graphics Forum, Vol. 30, No. 8, pp. 2427–2439.
  • Pacanowski, R., Celis, O.S., Schlick, C., Granier, X., Poulin, P., Cuyt, A. Transactions on Visualization and Computer Graphics, Vol. 18, No. 11, pp. 1824–1835.
  • Guarnera, D., Guarnera, G., Ghosh, A., Denk, C., Glencross, M. 2016. Brdf acquisition, Computer Graphics Forum, Vol. 35, No. 2, pp. 625–650.
  • (Proc. Eurographics STAR - State of The Art Report ’16). and Rusinkiewicz, S.M. 1998. A new change of variables for efficient brdf representation. Eurographics
  • Workshop on Rendering, Springer, –22. Ngan, A., Durand, F., Matusik, W. Experimental analysis of BRDF Symposium on Rendering, 117– Bagher, M., Soler, M.C., Holzschuch, N. 2012. Accurate fitting of measured reflectances using a Shifted distribution, Computer Graphics Forum, Vol. 31, No. 4, pp. 1509–
  • (Proc. Eurographics Symp. Rendering ’12). micro-facet Gu, J., Ramamoorthi, R., Belhumeur, P.N., Nayar, S.K. 2007. Dirty glass: Rendering transparent Eurographics
  • Rendering Techniques, Grenoble, France, Eurographics Association, –170. on The on Schlick, C. 1994. An inexpensive
  • BRDF model for physically-based rendering, Computer Graphics Forum, Vol. 13, No. 3, pp. 233–246. Richardson, I.E. 2002. Video Codec
  • Design: Developing Image and Video Compression Systems. John Wiley & Sons, Inc. New York, NY, USA. Hanrahan, P., Krueger, W. 1993.
  • Reflection from layered surfaces due to subsurface scattering. SIGGRAPH ’93, ACM, 165–174. Jakob, W., d’Eon, E., Jakob, O., Marschner, comprehensive framework for A rendering layered materials, ACM Transactions on Graphics, Vol. 33, No. 4, pp. 118:1–118:14. (Proc. SIGGRAPH’14). Jakob, W. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org (Access Date: 15.11.2017).
  • Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W. 2011. HDR-VDP-2: A calibrated visibility and quality predictions in all luminance conditions, ACM
  • Transactions on Graphics, Vol. 30, No. 4, pp. 40:1–40:14. (Proc. SIGGRAPH ’11). for Ward, G., Kurt, M., Bonneel, N. A practical framework for sharing and rendering real-world bidirectional distribution functions, Lawrence Berkeley National Laboratory, Tech. http://eetd.lbl.gov/sites/all/files/ publications/lbnl12-tensor-tree- representation29102012.pdf
  • Donner, C., Jensen, H.W. 2005. Light diffusion translucent
  • Transactions on Graphics, Vol. 24, No. 3, pp. 1032–1039. (Proc. SIGGRAPH ’05). ACM Heitz, E., d’Eon,
  • Importance sampling microfacet- based bsdfs using the distribution of visible normal, Computer Graphics Forum, Vol. 33, No. 4, pp. –112. Symp. Rendering ’14). Ward, G., Kurt, M., Bonneel, N. Reducing anisotropic bsdf measurement to common practice. The 2nd Eurographics Workshop on Material Appearance Modeling: Issues Eurographics Association, 5–8. Bonneel, N., van de Panne, M., Paris, S., Heidrich, W. 2011.
  • Displacement interpolation using lagrangian mass transport, ACM Transactions on Graphics, Vol. 30, No. 6, pp. 158:1–158:12. (Proc. SIGGRAPH Asia ’11). Fores, A., Pattanaik, S.N., Bosch, C., Pueyo, X. 2009. BRDFLab: A general system for designing
  • BRDFs. CEIG’09, Eurographics, –160. I. Copyright Disney Enterprises. http://www.disneyanimation.com /technology/brdf.html (Access Date: 15.11.2017).
  • Belcour, L., Courtes, L., Pacanowski, R., et al. 2015. ALTA: A BRDF Analysis http://alta.gforge.inria.fr/ (Access Date: 15.11.2017). Library.
  • Ward, G.J. 1994. The radiance lighting simulation and rendering system. SIGGRAPH ’94, ACM, 459–