Eu (III) 'un Narcissus Tazetta L. Yaprak Tozu Üzerine Biyosorpsiyonu

Bu çalışmada, yeni bir biyosorbent olan Narcissus Tazetta L. yaprak tozunun sulu çözeltilerden Eu(III) iyonlarının ayrılmasında biyosorpsiyon davranışları incelenmiştir. Eu(III) alımında temas süresi, başlangıç pH’sı, başlangıç Eu(III) derişimi, biyosorbent dozajı ve sıcaklık gibi çeşitli parametrelerin etkisini incelemek için kesikli denemeler yürütülmüştür. Biyosorpsiyon prosesi hızlıdır ve 30 dakikalık temas süresi sonunda dengeye ulaşılmıştır. pH 4-7 aralığında materyalin Eu(III) için önemli bir biyosorpsiyon kapasitesine sahip olduğu bulunmuştur. Biyosorpsiyon verisi Langmuir tek tabaka izotermi ve yalancı ikinci derece kinetik model ile uyum göstermiştir. pH 7’de yaprak tozunun biyosorpsiyon kapasitesi 122.0 mg g-1 olarak bulunmuştur. Termodinamik analiz biyosorpsiyonun kendiliğinden gerçekleştiğini ve endotermik yapıda olduğunu göstermiştir. 0.1 mol L-1 HNO3 çözeltisi ile tek kademede %97.17’lik desorpsiyon verimine ulaşılmıştır. Biyosorbentin yüzey alanı ve ortalama por çapı sırasıyla 1.725 mg g-1 ve 1.75 nm olarak tespit edilmiştir. Biyosorpsiyonda rol almış olabilen -CH, C-O, O-H, C=O ve COO- gibi kritik fonksiyonel gruplar kızıl ötesi spektroskopisi ile aydınlatılmıştır. Sulu çözeltilerden Eu(III) ayrılması ve kazanılmasında N. Tazetta yaprak tozunun etkili, maliyetsiz ve çevre dostu bir biyosorbent olduğu sonucuna varılmıştır.

Biosorption of Eu(III) onto Narcissus Tazetta L. Leaf Powder

In the present study, biosorption behaviours of novel biosorbent, Narcissus Tazetta L. leaf powder, were investigated for the separation of Eu(III) from aqueous solution. Batch experiments were conducted to examine the effect of various parameters such as contact time, initial pH, initial Eu(III) concentration, biosorbent dosage and temperature on the Eu(III) uptake. The biosorption process is fast, and equilibrium was established in 30 min. of contact time. It was found that the material has a significant biosorption capacity for europium in the pH range of 4-7. The results showed that the biosorption data fit Langmuir monolayer isotherm and pseudo-second order kinetic model well. Biosorption capacity of leaf powder was obtained as 122.0 mg g-1 at pH 7. Thermodynamic analysis indicates that the biosorption was spontaneous and endothermic in nature. Desorption efficiency(%) of 97.17 was achieved in single step using 0.1 mol L-1 HNO3 solution. Surface area of the biosorbent and the average pore size were determined as 1.725 mg g-1 and 1.75 nm, respectively. The critical functional groups -CH, C-O, O-H, C=O and COO- which may have taken part for the biosorption were identified by infrared spectra data. It was deduced that N. Tazetta leaf powder can be used as an effective, costless, and eco-friendly biosorbent for the separation and recovery of Eu(III) from aqueous solution.

___

  • [1] Wang, L-M., Lin, Q., Yue, L-J., Liu, L., Guo, F., Wang, F-M. (2008). Study of application of rare earth elements in advances low alloy steels, Journal of Alloys and Compounds, Vol. 451, 534-537pp. DOI: 10.1016/j.jallcom.2007.04.234
  • [2] Xu, C., Ai, X., Huang, C. (2001). Research and development of rare-earth cemented carbides, International Journal of Refractory Metals and Hard Materials, Vol. 19, 159-168pp. DOI: 10.1016/S0263-4368(01)00018-X
  • [3] Liang, T., Ding, S., Song, W., Chong, Z., Zhang, C., Li, H. (2008). A review of fractionations of rare earth elements in plants, Journal of Rare Earths, Vol.26, 7-15pp. DOI: 10.1016/S1002-0721(08)60027-7
  • [4] Rabatin, J.G. 1981. Rare earth X-ray phosphors for medicinal radiography. pp 203-218. Gschneidner Jr, K.A., ed. 1981. Industrial Applications of Rare Earth Elements, American Chemical Society Symposium Series, Washington, DC.
  • [5] Hidaka, H., Masuda, A. (1988) Nuclide analyses of rare earth elements of the Oklo uranium ore samples: a new method to estimate the neutron fluence, Earth and Planetary Science Letters, Vol. 88, 330-336pp. DOI: 10.1016/0012-821X(88)90089-1
  • [6] Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y.X., Walton, A., Matthias, B. (2013). Recycling of rare earths: A critical review, Journal of Cleaner Production, Vol. 51, 1-22pp. DOI: 10.1016/j.jclepro.2012.12.037
  • [7] Mei-juan, L., Xiao-ping, W., Qiang, T., Qi-dan, L. (2013). Luminescence properties of polymers containing europium complexes with 4-tert-butylbenzoic acid, Journal of Rare Earths, Vol.31, 950-956pp. DOI: 10.1016/S1002-0721(13)60011-3
  • [8] Yin-yan, L., Ying, T., You-jie, H., Shi-qing, X. (2013). Europium(III)-doped ionogels with improved luminescent properties, Journal of Non-Crystalline Solids, Vol. 376, 38-42pp. DOI: 10.1016/j.jnoncrysol.2013.04.038
  • [9] Han-yu, L., Tian-lin, Y., Ling, D., Wen-hua, W. (2012). Synthesis, characterization, fluorescence and DNA-binding studies of europium (III) pirates complexes with amide-based 2,3-dihydroxynaphthalene derivatives, Journal of Rare Earths, Vol. 30, 297-303pp. DOI: 10.1016/S1002-0721(12)60041-6
  • [10] Kibombo, H.S., Weber, A.S., Wu, C.M., Raghupathi, K.R., Koodali, R.T. (2013). Effectively dispersed europium oxide dopants in TiO2 aerogel supports for enhanced photocatalytic pollutant degradation, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 269, 49-58pp. DOI: 10.1016/j.jphotochem.2013.07.006
  • [11] Bruce, D.W., Hietbrink, B.E., DuBois, K.P. (1963). The acute mammalian toxicity of rare earth nitrates and oxides, Toxicology and Applied Pharmacology, Vol. 5, 750-759pp. DOI: 10.1016/0041-008X(63)90067-X
  • [12] Tai, P., Zhao, Q., Su, D., Li, P., Stagnitti, F. (2010). Biological toxicity of lanthanide elements on algae, Chemosphere, Vol. 80, 1031-1035pp. DOI: 10.1016/j.chemosphere.2010.05.030
  • [13] El-Said, H. (2013). Radiochemical studies on the separation of cesium, cobalt, and europium from aqueous solutions using zirconium selenomolybdate sorbent, Journal of Chemistry, Vol. 2013, 1-5pp. DOI: 10.1155/2013/756876
  • [14] Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore usingsulphuric acid leaching, solvent extraction and precipitation, Hydrometallurgy, Vol. 179, 100-109pp. DOI: 10.1016/j.hydromet.2018.05.024
  • [15] İnan, S., Tel, H., Sert, Ş., Çetinaya, B., Sengül, S., Özkan, B., Altaş, Y. (2018). Extraction and separation studies of rare earth elements using Cyanex 272 impregnated Amberlite XAD-7 resin, Hydrometallurgy, Vol. 181, 156-163pp. DOI: 10.1016/j.hydromet.2018.09.005
  • [16] Chen, L., Wu, Y., Dong, H., Meng, M., Li, C., Yan, Y., Chen, J. (2018). An overview on membrane strategies for rare earths extraction and separation, Separation and Purification Technology, Vol. 197, 70-85pp. DOI: 10.1016/j.seppur.2017.12.053
  • [17] Bagri, P., Luo, H., Popovs, I., Thapaliya, B.P., Dehaudt, J., Dai, S. (2018). Trimethyl phosphate based neutral ligand room temperature ionic liquids for electrodeposition of rare earth elements, Electrochemistry Communications, Vol. 96, 88-92pp. DOI: 10.1016/j.elecom.2018.10.001
  • [18] Wu, D, Niu C, Li D, Bai, Y. (2004). Solvent extraction of scandium(III), yttrium(III), lanthanum(III) and gadolinium (III) using Cyanex 302 in heptane from hydrochloric acid solutions, Journal of Alloys and Compounds, Vol. 374, 442-446pp. DOI: 10.1016/j.jallcom.2003.11.058
  • [19] Chen, Q. (2010). Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal, Journal of Rare Earths, Vol. 28, 125-131pp. DOI: 10.1016/S1002-0721(10)60272-4
  • [20] Kazy, S.K., Das, S.K., Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization, Journal of Industrial Microbiology and Biotechnology, Vol.33, 773-783pp. DOI: 10.1007/s10295-006-0108-1
  • [21] Xu, S., Zhang, S.M., Chen, K., Han, J.F., Liu, H.S., Wu, K. (2011). Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1, Journal of Rare Earths, Vol. 29, 265-270pp. DOI: 10.1016/S1002-0721(10)60443-7
  • [22] Palmieri, M.C., Volesky, B., Garcia, O. (2002). Biosorption of lanthanum using Sargassum fluitans in batch system, Hydrometallurgy, Vol. 67, 31-36pp. DOI: 10.1016/S0304-386X(02)00133-0
  • [23] Diniz, V., Volesky, B. (2005). Biosorption of La, Eu and Yb using Sargassum biomass, Water Research, Vol. 39, 239-247pp. DOI: 10.1016/j.watres.2004.09.009
  • [24] Palmieri, M.C., Garcia, O., Melkinov, P. (2000). Neodymium biosorption from acidic solutions in batch system, Process Biochemistry, Vol 36, 441-444pp. DOI: 10.1016/S0032-9592(00)00236-3
  • [25] Kütahyali, C., Sert, Ş., Çetinkaya, B., İnan, S., Eral, M. (2010). Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder, Separation Science and Technology, Vol. 45, 1456-1462pp. DOI: 10.1080/01496391003674266
  • [26] Xiong, C.H., Meng, Y., Yao, C.P., Shen, C. (2009). Adsorption of erbium(III) on D113-III resin from aqueous solutions: batch and column studies, Journal of Rare Earths, Vol. 27, 923-931pp. DOI: 10.1016/S1002-0721(08)60364-6
  • [27] Chen, T., Li, B., Fang, L., Chen, D-S., Xu, W-B., Xiong, C-H. (2015). Response surface methodology for optimizing adsorption performance of gel-type weak acid resin for Eu(III), Transactions of Nonferrous Metals Society of China, Vol. 25, 4207-4215pp. DOI: 10.1016/S1003-6326(15)64071-7
  • [28] Awwad, N.S., Gad, H.M.H., Ahmad, M.I., Aly, H.F. (2010). Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk, Colloids and Surfaces B, Vol. 81, 593-599pp. DOI: 10.1016/j.colsurfb.2010.08.002
  • [29] Vijayaraghavan, K., Balasubramanian, R. (2010). Single and binary biosorption of cerium and europium onto crab shell particles, Chemical Engineering Journal, Vol. 163, 337-343pp. DOI: 10.1016/j.cej.2010.08.012
  • [30] Diniz, V., Weber, M.E., Volesky, B., Naja, G. (2008). Column biosorption of lanthanum and europium by Sargassum, Water Research, Vol. 42, 363-371pp. DOI: 10.1016/j.watres.2007.07.027
  • [31] Anagnostopoulos, V.A., Symeopoulos, B.D. (2013). Sorption of europium by malt spent rootlets, a low cost biosorbent: effect of pH, kinetics and equilibrium studies, Journal of Radioanalytical and Nuclear Chemistry, Vol. 295, 7-13pp. DOI: 10.1007/s10967-012-1956-y
  • [32] Vijayaraghavan, K., Sathishkumar, M., Balasubramanian, R. (2010). Biosorption of lanthanum, cerium, europium, and ytterbium by a Brown Marine Alga, Turbinaria Conoides, Industrial & Engineering Chemistry Research, Vol. 49, 4405-4411pp. DOI: 10.1021/ie1000373
  • [33] Hanks, G.R. 2002. Narcissus and Daffodil. Taylor and Francis, London, 428p.
  • [34] Fu, H., Quan, X. (2006). Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation, Chemosphere, Vol. 63, 403-410pp. DOI: 10.1016/j.chemosphere.2005.08.054
  • [35] Wei, W., Yang, L., Zhong, W., Cui, J., Wei, Z. (2015). Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles, Digest Journal of Nanomaterials and Biostructures, Vol. 10, 663-680pp.
  • [36] Meseguer, V.F., Ortuño, J.F., Aguilar, M.I., Pinzon-Bedoya, M.L., Lloréns, M., Sáez, J., Pérez-Marín, A.B. (2016). Biosorption of cadmium (II) from aqueous solutions by natural and modified non-living leaves of Posidonia oceanica, Environmental Science and Pollution Research, Vol. 23, 24032-24046pp. DOI: 10.1007/s11356-016-7625-x
  • [37] Krika, F., Azzouz, N., Ncibi, M.C. (2015). Adsorptive removal of cadmium from aqueous media using Posidonia oceanica biomass: equilibrium, dynamic and thermodynamic studies, International Journal of Environmental Science and Technology, Vol. 12, 983-994pp. DOI: 10.1007/s13762-013-0483-x
  • [38] Gupta, V.K., Rastogi, A. (2008). Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase, Journal of Hazardous Materials, Vol. 153, 759-766pp. DOI: 10.1016/j.jhazmat.2007.09.021
  • [39] Nadeem, R., Hanif, M.A., Mahmood, A., Jamil, M.S., Ashraf, M. (2009). Biosorption of Cu(II) ions from aqueous effluents by blackgram bran (BGB), Journal of Hazardous Materials, Vol. 168,1622-1625pp. DOI: 10.1016/j.jhazmat.2009.02.135
  • [40] Baral, S.S., Das, S.N., Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochemical Engineering Journal, Vol. 31, 216-222pp. DOI: 10.1016/j.bej.2006.08.003
  • [41] Aksu, Z., Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochemistry, Vol. 40, 1347-1361pp. DOI: 10.1016/j.procbio.2004.06.07
  • [42] Lagergren, S. (1898). About the theory of so-called adsorption of solution substances, Handlinge, Vol. 24, 147-156pp.
  • [43] Ho, Y.S., Mckay, G. (1999). Sorption of lead(II) ions on peat, Water Research, Vol. 33, 578-584pp. DOI: 10.1016/S0043-1354(98)00207-3
  • [44] Mahajan, G., Sud, D. (2011). Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis Hypogea shell: a green approach, Bioresource Technology, Vol. 6, 3324-3338pp. DOI: 10.15376/biores.6.3.3324-3338
  • [45] Malkoc, C.E., Nuhoglu, Y., Dundar, M. (2006). Adsorption of chromium(VI) on pomace-an olive oil industry waste: batch and column studies, Journal of Hazardous Materials, Vol. 138, 142-151pp. DOI: 10.1016/j.jhazmat.2006.05.051
  • [46] Azouaoua, N., Sadaouia, Z., Djaafri, A., Mokaddema, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics, Journal of Hazardous Materials, Vol. 184, 126-134pp. DOI: 10.1016/j.jhazmat.2010.08.014
  • [47] Zhang, Y., Banks, C. (2006). A comparison of the properties of immobilized Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns, Water Research, Vol. 40, 788-798pp. DOI: 10.1016/j.watres.2005.12.011
  • [48] Sari, A., Mendil, D., Tuzen, M., Soylak, M. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies, Chemical Engineering Journal, Vol. 144, 1-9pp. DOI: 10.1016/j.cej.2007.12.020
  • [49] Castro, R.S.D., Caetano, L., Ferreira, G., Padilha, P.M., Saeki, M.J., Zara, L.F., Martines, A.M.U., Castro, G.R. (2011). Banana peel applied to the solid phase extraction of copper and lead from river water: Pre-concentration of metal ions with a fruit waste, Industrial & Engineering Chemistry Research, Vol. 50, 3446-3451pp. DOI: 10.1021/ie101499e
  • [50] Ferreira, L.S., Rodrigues, M.S., Carvalho, J.C.M., Lodi, A., Finocchio, E., Perego, P., Converti, A. (2011). Adsorption of Ni+2, Zn+2 and Pb+2 onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris I. single metal systems, Chemical Engineering Journal, Vol. 173, 326-333pp. DOI: 10.1016/j.cej.2011.07.039
  • [51] Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, Vol. 40, 1361-1403pp.
  • [52] Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, Vol. 57, 385-471pp
  • [53] Dubinin, L. V., Zaverina, M. M., Radushkevich, E. D. (1947). Sorption and structure of active carbons I. Adsorption of organic vapors, Zhurnal Fizicheskoi Khimii, Vol. 21, 1351-1362pp.
  • [54] Nayak, A.K., Pal, A. (2017). Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling, Journal of Environmental Management, Vol. 200, 145-159pp. DOI: 10.1016/j.jenvman.2017.05.045
  • [55] Malkoc, C.E., Nuhoglu, Y. (2007). Potential of tea factory waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies, Separation and Purification Technology, Vol. 54, 291-298pp. DOI: 10.1016/j.seppur.2006.09.017
  • [56] Barrera-Diaz, C., Colin-Cruz, A., Urena-Nunez, F., Romero-Romo, M., Palomar-Pardave, E. (2004). Cr(VI) removal from wastewater using low cost sorbent materials: roots of Typha latifolia and ashes, Environmental Technology, Vol. 25, 907-917pp. DOI: 10.1080/09593330.2004.9619384
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi